Head of the Chair: prof. Maia Kivisaar Contact details: Riia 23-104, Phone: +372 737 5036, email: maia.kivisaar [ät] ut.ee
Research group in microbial genetics
Head of the group: Professor Maia Kivisaar
Contact: Riia 23-104, Phone +372 7375036, email: maia.kivisaar [ät] ut.ee
Research areas:
Molecular mechanisms of evolution of bacteria under stressful conditions
Identification of new genes affecting mutation frequency and elucidation of their role in a network affecting mutational processes
Usage of bacteria in environmentally friendly technologies
People
Heili Ilves, researcher, PhD, heili.ilves [ät] ut.ee Signe Saumaa, researcher, PhD, signe.saumaa [ät] ut.ee Signe Viggor, researcher, PhD, signe.viggor [ät] ut.ee Merike Jõesaar, researcher, PhD, merike.joesaar [ät] ut.ee Anne Menert, researcher, PhD, anne.menert [ät] ut.ee Tatjana Jatsenko, doctoral student, tanjaja [ät] ut.ee Katren Mikkel, doctoral student, katren.mikkel [ät] ut.ee Tanel Ilmjärv, doctoral student, tanel.ilmjarv [ät] ut.ee Kärt Ukkivi, doctoral student, kart.ukkivi [ät] ut.ee Mari Tagel, doctoral student, mari.tagel [ät] ut.ee Triin Korb, doctoral student, triin.korb [ät] ut.ee Ingrem Metsik, doctoral student, ingrem [ät] windowslive.com Karl Jürgenstein, master student Liselle Luks, master student Kadri Kurg, master student Lauri Leas, bachelor student Lea Lopp, bachelor student Jaroslav Panjukov, bachelor student
Research
In nature, bacteria are constantly confronted with variable and stressful environments. Under such conditions bacteria grow very slowly if at all, but despite the reduced amount of DNA replication mutants arise that are able to take over bacterial populations. This process is known as stationary-phase mutagenesis. Mechanisms of stationary-phase mutagenesis are important in generation of resistance to antibiotics, host invasion by pathogenic bacteria, and evolution of new catabolic pathways for degradation of xenobiotic compounds and evolving bacteria-plant interactions. The genus Pseudomonas represents one of the prominent groups of bacteria including both pathogenic and non-pathogenic species. The main goal of our research is to study molecular mechanisms of genetic adaptation of bacteria under conditions of environmental stress by using P. putida and P. aeruginosa as model organisms.
We have previously shown that the spectrum of mutations observed in stationary-phase populations of P. putida differs from that occurring among mutants of actively growing bacteria. We have observed that enzymes participating in nucleotide excision repair NER play an important role in generation of mutations in stationary-phase bacteria. Possibly, NER enzymes may initiate gratuitous DNA repair and the following DNA repair synthesis might be mutagenic. In addition to replicative DNA polymerase Pol III and DNA polymerase I, specialized DNA polymerases Pol II, Pol IV and Pol III homologue DnaE2 (ImuC) are found in pseudomonads. Pol IV-dependent mutagenesis causes a remarkable increase in the frequency of accumulation of 1-bp deletion mutants in P. putida populations starved for more than one week. We have also observed that both ImuC and Pol IV (DinB) can confer a protective role against DNA alkylation damage in pseudomonads, whereas mutagenesis induced by DNA alkylation damage is largely dependent on ImuC. Our current research is connected with further elucidation of molecular mechanisms of mutagenic processes and evolution of bacteria exposed to environmental stress by focusing on the role of specialized (potentially error-prone) DNA polymerases in DNA repair synthesis. For example, we are investigating whether specialized DNA polymerases could participate in NER-dependent mutagenesis and have interconnections with other DNA repair systems.
Compared to adaptation of pathogenic bacteria, mutational processes operating in natural populations of bacteria living in polluted environment are still unexplored. Our results indicate that a large proportion of pollutants-degrading indigenous bacteria exhibit a potential for induced mutagenesis under the conditions of DNA damage due to the presence of error-prone DNA polymerases. Our studies will address contribution of these DNA polymerases to evolvability of indigenous bacteria in the presence of environmental pollutants. In addition, to understand adaptation mechanisms of pollutants-degrading bacterial populations at molecular level, laboratory evolution experiments with bacteria, coupled with classical genetics and modern DNA sequence analysis and resequencing technologies will be performed.
We are also interested in identification of a wider network underlying the mutagenesis and evolvability of microbial populations under environmental stress. By combining a newly constructed papillation assay developed in our laboratory and transposon mutagenesis we have already identified and verified several novel genes (e.g., truA, gacS, mpl) affecting mutation frequency in P. putida. This assay and other similar assay systems developed by us can be used in further studies of mutation frequency-affecting genes by performing transposon mutants’ library screenings in strains lacking certain DNA repair enzymes or DNA polymerases, and in the presence of sublethal doses of antibiotics, aromatic pollutants and nano-particles. Functional studies of the identified genes are currently in progress to elucidate their performance in the network affecting mutagenic processes in bacteria.
In addition to the basic research we are collaborating with other research groups in order to work out solutions based on microbial processes which would allow removal of environmental pollution and facilitate bioleaching of metals from organometallic complexes-containing ores.
(1) Our earlier studies have been connected with elucidation of mechanisms of regulation of phenol degradation genes pheBA and other catabolic genes involved in pollutants degradation. This competence is used in the ERANET Inno Indigo project “Wastewater reuse: improving the odds by understanding natural attenuation“, where partners from India, Portugal and Estonia are participating. The project aims to analyse the natural attenuation capacity at a wastewater treatment plant and work out ways for improving the degradation process by bioaugmentation. The strains isolated from Surge Pond Sludge and Clarifier samples, which were obtained during our visit to Indian partner’s Institute and wastewater treating plant at Mumbai (URAN), are examined for the ability to use different aromatic and aliphatic compounds and for the presence for corresponding catabolic genes. Bacterial strains with best stress tolerance and biodegradative capacity will be selected for bioaugmentation of crude oil waste degradation.
(2) We are participating in RITA1/01-01 subproject „Bioleaching of metals from Estonian graptolite argillite“. This subproject is a part of the larger interdisciplinary project aiming to provide information on the best available and new innovative technologies for utilization of existing mineral resources and information on properties and possible processing technologies for potential resources in Estonia. Consortium of scientists of different specialties from University of Tartu, Tallinn Technical University, and Geological Survey of Estonia participate in this project. Graptolite argillite (GA) is a potential source for V, Mo, Ni, U, Re and other elements. Metals are in GA as sulfides or in the composition of organometallic compounds. While the role of pyrite oxidation microorganisms in bioleaching of metals is well-studied, little is known about the microbial decomposition of organometallic complexes. Microbial degradation of organometallic complexes and bioleaching of metals would allow valorization of argillite as an environmentally harmful byproduct accompanying mining of other ores. Our research is focused on development and optimisation of consortia of indigenous microorganisms by using those isolated by us previously and by taking new samples of indigenous microorganisms found in the locality of deposit. Medium and conditions for biodegradation of the organic matter of GA and bioleaching of metals will be elaborated.
We are also collaborating with Centre of Synthetic Biology established by Institute of Technology, University of Tartu (participation in ASTRA infrastructure proposal and in Teaming proposal). Soil bacterium Pseudomonas putida could potentially be used as cell factories in various biotechnological settings because of its good genetic accessibility, metabolic versatility and high tolerance to toxic and harsh conditions met in industrial processes. Our competence can be used for genetic manipulation of this organism, monitoring stability and stress levels of engineered strains and further optimization of cell factories by adaptive evolution.
Selected publications:
1. Ilmjärv, T., Naanuri, E., Kivisaar, M. (2017). Contribution of increased mutagenesis to the evolution of pollutants-degrading indigenous bacteria. PLoS ONE, e0182484, doi:10.1371/journal.pone.0182484
2. Sidorenko, J., Jatsenko, T., Kivisaar, M. (2017). Ongoing evolution of Pseudomonas aeruginosa PAO1 sublines complicates studies of DNA damage repair and tolerance. Mutat. Res. 797-799:26-37. doi:10.1016/j.mrfmmm.2017.03.005
3. Jatsenko, T., Sidorenko, J., Saumaa, S., Kivisaar, M. (2017). DNA polymerases ImuC and DinB are involved in DNA alkylation damage tolerance in Pseudomonas aeruginosa and Pseudomonas putida. PLoS ONE, e0170719, doi: 10.1371/journal.pone.0170719
4. Tagel, M., Tavita, K., Hõrak, R., Kivisaar, M., Ilves, H. (2016) A novel papillation assay for the identification of genes affecting mutation rate in Pseudomonas putida and other pseudomonads. Mutat.Res. 790:41-55. doi: 10.1016/j.mrfmmm.2016.06.002.
5. Paris, Ü., Mikkel K, Tavita K, Saumaa S, Teras R, Kivisaar M. (2015) NHEJ enzymes LigD and Ku participate in stationary-phase mutagenesis in Pseudomonas putida. DNA Repair 31:11-8. doi: 10.1016/j.dnarep.2015.04.005.
6. Sidorenko, J., Ukkivi, K., and Kivisaar, M. (2015) NER enzymes maintain genome integrity and suppress homologous recombination in the absence of exogenously induced DNA damage in Pseudomonas putida. DNA Repair 25:15-26. doi: 10.1016/j.dnarep.2014.11.001.
7. Martínez-García, E., Jatsenko, T., Kivisaar, M., and de Lorenzo, V. (2015) Freeing Pseudomonas putida KT2440 of its proviral load strengthens endurance to environmental stresses. Environ Microbiol. 17:76-90. doi: 10.1111/1462-2920.12492.
8. Mielecki, D., Saumaa, S., Wrzesiński, M., Maciejewska, A.M., Żuchniewicz, K., Sikora, A., Piwowarski, J., Nieminuszczy, J., Kivisaar, M., Grzesiuk, E. (2013) Pseudomonas putida proteins AlkA and AkB comprise different defense systems for the repair of alkylation damage to DNA – in vivo, in vitro and in silico studies. PLoS One. 8:e76198. doi: 10.1371/journal.pone.0076198.
9. Juurik, T., Ilves, H., Teras, R., Ilmjärv, T., Tavita, K., Ukkivi, K., Teppo, A., Mikkel, K., and Kivisaar, M. (2012) Mutation frequency and spectrum of mutations vary at different chromosomal positions of Pseudomonas putida. PLOS One 7:e48511. doi: 10.1371/journal.pone.0048511.
10. Tavita, K., Mikkel, K., Tark-Dame M., Jerabek, H., Teras, R., Sidorenko J., Tegova, R., Tover, A., Dame, R.T., and Kivisaar, M. (2012) Homologous recombination is facilitated in starving populations of Pseudomonas putida by phenol stress and affected by chromosomal location of the recombination target. Mutat. Res. 737:12-24.
11. Kivisaar, M. (2011). Evolution of catabolic pathways and their regulatory systems in synthetic nitroaromatic compounds degrading bacteria. Mol. Microbiol. 82:265-268.
12. Sidorenko, J., Jatsenko, T., Saumaa S., Teras, R., Tark-Dame, M., Hõrak R., and Kivisaar, M. (2011). Involvement of specialized DNA polymerases Pol II, Pol IV and DnaE2 in DNA replication in the absence of Pol I in Pseudomonas putida. Mutat. Res. 717(1-2):63-77.
13. Kivisaar, M. (2010). Mechanisms of stationary-phase mutagenesis in bacteria: mutational processes in pseudomonads. FEMS Microbiol. Lett. 312:1-14.
14. Jatsenko, T., Tover, A., Tegova, R., and Kivisaar, M. (2010) Molecular characterization of Rifr mutations in Pseudomonas aeruginosa and Pseudomonas putida. Mutat. Res. 683:106-114.
15. Kivisaar, M. (2009). Degradation of nitroaromatic compounds: a model to study evolution of metabolic pathways. Mol. Microbiol. 74:777-781.
16. Tarassova, K., Tegova, R., Tover, A., Teras, R., Tark, M., Saumaa, S., and Kivisaar, M. (2009) Elevated mutation frequency in survival population of carbon-starved rpoS-deficient Pseudomonas putida is caused by reduced expression of superoxide dismutase and catalase. J. Bacteriol. 191:3604-3614.
17. Teras, R., Jakovleva, J., and Kivisaar, M. (2009) Fis negatively affects binding of Tn4652 transposase by out-competing IHF from the left end of Tn4652. Microbiology 155:1203-1214.
18. Tark, M., Tover, A., Koorits, L., Tegova, R., and Kivisaar, M. (2008) Dual role of NER in mutagenesis in Pseudomonas putida. DNA Repair 7:20-30.
19. Saumaa, S., Tover, A., Tark, M., Tegova, R., and Kivisaar M. (2007) Oxidative DNA damage defense systems in avoidance of stationary-phase mutagenesis in Pseudomonas putida. J. Bacteriol. 189:5504-5514.
20. Putrinš, M., Tover, A., Tegova, R., Saks, Ü., and Kivisaar M. (2007) Study of factors which negatively affect expression of the phenol degradation operon pheBA in Pseudomonas putida. Microbiology 153:1860-1871.
21. Koorits, L., Tegova, R., Tark, M., Tarassova, K., Tover, A., and Kivisaar M. (2007) Study of involvement of ImuB and DnaE2 in stationary-phase mutagenesis in Pseudomonas putida. DNA Repair 6:863-868.
22. Kivistik, P.A., Putrinš, M., Püvi, K., Ilves, H., Kivisaar, M., and R. Hõrak. (2006) ColRS two-component system regulates membrane functions and protects Pseudomonas putida against phenol. J. Bacteriol. 188:8109-8117.
23. Saumaa, S., Tarassova, K., Tark, M., Tover, A., Tegova, R., and Kivisaar M. (2006) Involvement of DNA mismatch repair in stationary-phase mutagenesis during prolonged starvation of Pseudomonas putida. DNA Repair 5:505-514.
24. Tark, M., A. Tover, K. Tarassova, R. Tegova, G. Kivi, R. Hõrak, and Kivisaar M. (2005) A DNA polymerase V homologue encoded by TOL plasmid pWW0 confers evolutionary fitness on Pseudomonas putida under conditions of environmental stress. J. Bacteriol. 187:5203-5213.
25. Tegova, R., Tover, A., Tarassova, K., Tark, M., and Kivisaar, M. (2004) Involvement of error-prone DNA polymerase pol IV on stationary phase mutagenesis in Pseudomonas putida. J. Bacteriol. 186:2735-44.
26. Neumann, G., Teras, R., Monson, L., Kivisaar, M., Schauer, F., and Heipieper, H.J. (2004) Simultaneous degradation of atrazine and phenol by Pseudomonas sp. strain ADP: effects of toxicity and adaptation. Appl. Environ. Microbiol. 70:1907-1912.
27. Ilves, H., Hõrak, R., Teras, R., and Kivisaar, M. (2004) IHF is limiting host factor in transposition of Pseudomonas putida transposon Tn4652 in stationary phase. Mol. Microbiol 51:1773-85.
28. Hõrak, R., Ilves, H., Pruunsild, P., Kuljus, M., and Kivisaar, M. (2004) The ColR-ColS two-component signal transduction system is involved in regulation of Tn4652 transposition in Pseudomonas putida under starvation conditions. Mol. Microbiol. 54:795-807.
29. Kivisaar, M. (2003) Stationary phase mutagenesis: mechanisms that accelerate adaptation of microbial populations under environmental stress. Environ. Microbiol. 5: 814-827.
30. Saumaa, S., Tover, A., Kasak, L., and Kivisaar, M. (2002) Different spectra of stationary-phase mutations in early-arising versus late-arising mutants of Pseudomonas putida: involvement of the DNA repair enzyme MutY and the stationary-phase sigma factor RpoS. J. Bacteriol. 184:6957-6965.
31. Ilves, H., Hõrak, R., and Kivisaar, M. (2001) Involvement of sigma(S) in starvation-induced transposition of Pseudomonas putida transposon Tn4652. J. Bacteriol. 183:5445-5448.
32. Tover, A., Ojangu, E.L., and Kivisaar, M. (2001) Growth medium composition-determined regulatory mechanisms are superimposed on CatR-mediated transcription from the pheBA and catBCA promoters in Pseudomonas putida. Microbiology 147:2149-2156.
33. Ojangu, E., Tover, A., Teras, R., and Kivisaar, M. (2000) Effect of combination of different –10 hexamers and downstream sequences on stationary phase-specific sigma factor sS-dependent transcription in Pseudomonas putida. J. Bacteriol. 182:6707-6713
34. Teras, R., R. Hõrak, and Kivisaar, M. (2000) Transcription from fusion promoters generated during transposition of transposon Tn4652 is positively affected by integration host factor in Pseudomonas putida. J. Bacteriol.182:589-598.
35. Tover, A., Zernant, J., Chugani, S.A., Chakrabarty, A.M., and Kivisaar, M. (2000) Critical nucleotides in the interaction of CatR with the pheBA promoter: conservation of the CatR-mediated regulation mechanisms between the pheBA and catBCA operons. Microbiology. 146: 173-183.
36. Hõrak, R., and Kivisaar, M. (1999) Regulation of transposase of Tn4652 by the transposon-encoded protein TnpC. J. Bacteriol. 181: 6312-6318.
37. Kallastu, A., Hõrak, R., and Kivisaar, M. (1998) Identification and characterization of IS1411, a new insertion sequence which causes transcriptional activation of the phenol degradation genes in Pseudomonas putida. J. Bacteriol. 180:5306-5312.
38. Hõrak, R., and Kivisaar, M. (1998) Expression of the transposase gene tnpA of Tn4652 is positively affected by integration host factor. J. Bacteriol. 180:2822-2829.
39. Kasak, L., Hõrak, R., and Kivisaar, M. (1997) Promoter-creating mutations in Pseudomonas putida: a model system for the study of mutation in starving bacteria. Proc. Natl. Acad. Sci. U.S.A. 94:3134-3139.
40. Parsek., M.,R., Kivisaar, M., and Chakrabarty, A., M. (1995) Differential DNA bending induced by the Pseudomonas putida LysR-type regulator, CatR, at the plasmid-borne pheBA and chromosomal catBC promoters. Mol. Microbiol. 15:819-828.
41. Kasak, L., Hõrak, R., Nurk, A., Talvik, K., and Kivisaar, M. (1993) Regulation of the catechol 1,2-dioxygenase and phenol monooxygenase-encoding pheBA operon in Pseudomonas putida PaW85. J. Bacteriol. 175:8038-8042.
42. Nurk, A., Tamm, A., Hõrak, R., and Kivisaar, M. (1993) In vivo generated fusion promoters in Pseudomonas putida. Gene 127:23-29.
43. Nurk, A., Kasak, L., and Kivisaar, M. (1991) Sequence of the gene (pheA) encoding phenol monooxygenase from Pseudomonas sp. EST1001: expression in Escherichia coli and Pseudomonas putida. Gene 102:13-18.
44. Kivisaar, M., Kasak, L., and Nurk, A. (1991) Sequence of the plasmid-encoded catechol 1,2-dioxygenase-expressing gene, pheB, of phenol-degrading Pseudomonas sp. strain EST1001. Gene 98:15-20.
45. Kivisaar, M., Hõrak, R., Kasak, L., Heinaru, A., and Habicht, J. (1990) Selection of independent plasmids determining phenol degadation in Pseudomonas putida and the cloning and expression of genes encoding phenol monooxygenase and catechol 1,2-dioxygenase. Plasmid 24:25-36.
46. Kivisaar, M., Habicht, J., and Heinaru, A. (1989) Degradation of phenol and m-toluate in Pseudomonas sp. strain EST1001 and its transconjugants is determined by a multiplasmid system. J. Bacteriol. 171:5111-5116.Patent application Menert, A.; Kivisaar, M.; Sipp Kulli, S.; Heinaru, A.; Maidre, T. Method for decomposition of the metallorganic matter of graptolite-argillite by microbial consortium; Owner: BiotaTec OÜ; Authors: Priority number: WO/2017/140324; Priority date: 16.02.2016; Published: 24.08.2017.
Bacterial stress tolerance research group
Head of the group: Associate Professor Rita Hõrak
Contact: Riia 23-103/106, Phone +372 7374077, email: rita.horak [ät] ut.ee
StaffRita Hõrak, associate professor, PhD, rita.horak [ät] ut.eeSirli Luup, PhD student, MSc, sirli.luup [ät] ut.eeKarl Mumm, PhD student, MScLiis Kärgenberg, bachelor studentKendra Piirmets, bachelor student
ColRS – signal transduction pathway for metal tolerance
Successful survival of bacteria in ever-changing conditions depends on their ability to monitor the environment and to translate external signals into adaptive responses, mostly by adjusting their gene expression according to new situations. Two-component systems consisting of a transmembrane sensor kinase and a cytoplasmic response regulator are important signal pathways in bacteria. The ColRS signaling pathway senses the excess of zinc, iron, manganese and cadmium and contributes to metal tolerance of Pseudomonas putida. We aim to define the regulatory network operating downstream of the ColRS signaling to enlighten the molecular mechanisms of metal tolerance of P. putida. We also analyze the possible interconnections between ColRS signaling and the three-component TonB system, which is important for the energy transduction between outer and inner membrane.
Fitness effects of toxin-antitoxin systems in Pseudomonas putida
Toxin-antitoxin (TA) systems code for two proteins: one is toxic to vital cellular processes and the other functions as an antidote of the toxin. Bacterial genomes contain many copies of these potentially poisonous gene pairs. It has been proposed that TA systems contribute to stress tolerance, as they are able to shift the cells to a dormant state. However, as studies conducted so far have resulted in controversial outcomes, the biological importance of TA systems still remains unclear. We aim to evaluate the costs and benefits of genomic TA pairs in the biology of P. putida. Systematic screening of 15 predicted genomic TA systems in P. putida by examining the consequences of antitoxin deletions as well as the fitness effects of removal of all 15 TA operons suggest that TA operons are rather selfish than beneficial. Further studies will reveal whether these selfish DNA elements can impact on phage resistance of P. putida.
1. Rosendahl S, Tamman H, Brauer A, Remm M, Hõrak R. 2020. Chromosomal toxin-antitoxin systems in Pseudomonas putida are rather selfish than beneficial. Sci Rep 10:9230. 2. Talavera A, Tamman H, Ainelo A, Konijnenberg A, Hadzi S, Sobott F, Garcia-Pino A, Hõrak R, Loris R. 2019. A dual role in regulation and toxicity for the disordered N-terminus of the toxin GraT. Nat Commun 10:972. 3. Ainelo A, Porosk R, Kilk K, Rosendahl S, Remme J, Hõrak R. 2019. Pseudomonas putida Responds to the Toxin GraT by Inducing Ribosome Biogenesis Factors and Repressing TCA Cycle Enzymes. Toxins (Basel) 11. 4. Ainsaar K, Tamman H, Kasvandik S, Tenson T, Hõrak R. 2019. TonBm-PocAB system is required for maintenance of membrane integrity and polar position of flagella in Pseudomonas putida. J Bacteriol 201. 5. Hõrak R, Tamman H. 2017. Desperate times call for desperate measures: benefits and costs of toxin-antitoxin systems. Curr Genet 63:69-74. 6. Ainelo A, Tamman H, Leppik M, Remme J, Hõrak R. 2016. The toxin GraT inhibits ribosome biogenesis. Mol Microbiol 100:719-734. 7. Tamman H, Ainelo A, Tagel M, Hõrak R. 2016. Stability of the GraA antitoxin depends on the growth phase, ATP level, and global regulator MexT. J Bacteriol 198:787-796. 8. Tamman H, Ainelo A, Ainsaar K, Hõrak R. 2014. A Moderate Toxin, GraT, Modulates Growth Rate and Stress Tolerance of Pseudomonas putida. J Bacteriol 196:157-69. 9. Mumm K, Ainsaar K, Kasvandik S, Tenson T, Hõrak R. 2016. Responses of Pseudomonas putida to zinc excess determined at the proteome level: pathways dependent and independent of ColRS. J Proteome Res 15:4349-4368. 10. Ainsaar K, Mumm K, Ilves H, Hõrak R. 2014. The ColRS signal transduction system responds to the excess of external zinc, iron, manganese, and cadmium. BMC Microbiol 14:162. 11. Putrinš M, Ainelo A, Ilves H, Hõrak R. 2011. The ColRS system is essential for the hunger response of glucose-growing Pseudomonas putida. BMC Microbiol 11:170. 12. Putrinš M, Ilves H, Lilje L, Kivisaar M, Hõrak R. 2010. The impact of ColRS two-component system and TtgABC efflux pump on phenol tolerance of Pseudomonas putida becomes evident only in growing bacteria. BMC Microbiol 10:110. 13. Putrinš M, Ilves H, Kivisaar M, Hõrak R. 2008. ColRS two-component system prevents lysis of subpopulation of glucose-grown Pseudomonas putida. Environ Microbiol 10:2886-2893. 14. Kivistik PA, Putrinš M, Püvi K, Ilves H, Kivisaar M, Hõrak R. 2006. The ColRS two-component system regulates membrane functions and protects Pseudomonas putida against phenol. J Bacteriol 188:8109-17.
Research group in bacterial lifestyles
Head of the group: Associate Professor Riho Teras
Contact: Riia 23, TartuPhone: +372 737 6038email: riho.teras [ät] ut.ee
Factors of biofilm development
Global regulators of bacteria
Topics:
Biofilm of Pseudomonas putida: attachment, switching from planktonic lifestyle to sessile, involvement of global regulators in biofilm formation, P. putida’s adhesins LapA and LapF, extracellular factors, the hydrophobicity of bacterial surface, colonization of plant roots
Global regulators of P. putida: global regulator Fis, GacS/GacA signal system, the involvement of ROS in colonization of plant roots
People Riho Teras, associate professor, Ph.D., riho.teras [ät] ut.ee Annika Teppo, doctoral student, MSc, annika.teppo [ät] ut.ee Marge Puhm, master student Kadri Samuel, bachelor student Johanna Hendrikson, bachelor student
Biofilm is an ancient lifestyle of bacteria – the first structures of this kind of bacterial life appeared billions of years ago. The functionality and structure of a biofilm is often compared to a city – it has roads for transport and skyscrapers for living in. Indeed, like a city, every biofilm has its own structure and has had its unique development, depending on the bacterial species and environment. Biofilms have been having a remarkable effect on the life on Earth since appearance, and now, in modern human society, the negative impact of biofilm causes approximately 6 billions of dollars of economic loss every year.
We are interested in regulators and factors that enhance biofilm formation in Pseudomonas putida, a cosmopolitan bacterium that often colonizes plant roots and has a positive impact on plant growth. Thereby P. putida is a significant bacterium for agricultural applications. To defend the plant from pathogenic microorganisms, P. putida has to attach to roots and colonize the roots surface, including the root tips which grow up to 10 mm per day. We have shown that the colonization of barley root tips depends on biofilm formation and a global regulator Fis. The overexpression of fis has a negative impact on migration to the root tips due to enhanced biofilm formation, the sessile lifestyle of bacteria. As plant roots secrete reactive oxygen species (ROS), we also examine the effects of ROS on the colonization ability of P. putida.
The global regulator Fis binds and bends DNA, and thereby, its functionality appears in processes that need alteration of DNA topology, including transposition and regulation of transcription. However, our prime aim was to ascertain Fis-regulated genes that are involved in biofilm formation of P. putida. Genes of adhesins lapA and lapF are Fis-regulated and have a significant role in P. putida biofilm formation. We identified six sigma70-type promoters for the transcription of lapA and two Fis-binding sites for the activation of lapA expression. These results add Fis to the list of lapA transcriptional regulators already including the GacS/GacA signal system, FleQ, (p)ppGpp, c-di-GMP; and point to a sophisticated transcriptional regulation. Contrary to the complex transcriptional regulation of lapA, for lapF, we identified only one promoter and one Fis-binding site, which overlapped with the promoter. We continue the study to ascertain the network regulating the transcription of lapA.
The study for the function of LapF protein has been most intriguing. Similarly to LapA, LapF is a surface protein, but unlike LapA it is expressed mostly in the stationary phase or in the mature biofilm. We showed that lapF-deletion decreased cell surface hydrophobicity and the presence of LapF passively influences P. putida’s sensitivity to toxic hydrophobic and hydrophilic compounds. Hydrophobicity of bacterial surface has been described as an essential factor for cell-cell contact in the mature biofilm and cell aggregation. However, the lapF-deletion does not affect mature biofilm in LB medium. Therefore we are searching for a potential function for LapF.
Confocal micrograph of aggregated P. putida strain F15 in semisolid LB medium. Cells are stained with membrane-selective dye FM-142.
Confocal micrograph of ROS-producing P. putida strain F15. Cells are stained with ROS-sensitive dye rhodamin-123.
Teppo A, Lahesaare A, Ainelo H, Samuel K, Kivisaar M, et al. (2018) Colonization efficiency of Pseudomonas putida is influenced by Fis-controlled transcription of nuoA-N operon. PLoS One 13: e0201841
Ainelo, H., A. Lahesaare, A. Teppo, M. Kivisaar & R. Teras, (2017) The promoter region of lapA and its transcriptional regulation by Fis in Pseudomonas putida. PloS one 12: e0185482.
Lahesaare, A., H. Ainelo, A. Teppo, M. Kivisaar, H.J. Heipieper & R. Teras, (2016) LapF and Its Regulation by Fis Affect the Cell Surface Hydrophobicity of Pseudomonas putida. PloS one 11: e0166078.
Lahesaare, A., H. Moor, M. Kivisaar & R. Teras, (2014) Pseudomonas putida Fis binds to the lapF promoter in vitro and represses the expression of LapF. PloS one 9: e115901.
Moor, H., A. Teppo, A. Lahesaare, M. Kivisaar & R. Teras, (2014) Fis overexpression enhances Pseudomonas putida biofilm formation by regulating the ratio of LapA and LapF. Microbiology (Reading, England) 160: 2681-2693.
Research group in microbial ecology
Head of the group:Professor Ain Heinaru
Contact: Riia 23-101, TartuPhone: +372 737 5012email: ain.heinaru [ät] ut.ee
Nature contains chemical compounds that are degraded by the catabolic activities of microorganisms to generate the energy and to support the world-wide life cycle. Some of the compounds (aromatic and aliphatic hydrocarbons, heavy metals etc.) are highly toxic and mutagenic for organisms. However, several bacteria are able to degrade these compounds. By using natural selection and the molecular genetic engineering methods it is possible to generate supermicrobes applicable for cleaning up of polluted areas.
Bacterial catabolic genes are located on extrachromosomal plasmids and/or in chromosomes. Our special focus is on the structure and functioning of these genes and operons. We perform nucleotide sequencing of whole genomes of bacteria in order to understand how these catabolic structures have evolved. We are also interested in the functional redundancy of catabolic modules to verify the best catabolic activities both in indigenous and laboratory constructed bacterial strains. Essential part of this work is the determination of enzyme activities and identification of intermediates of the catabolic pathways and studying the role of these intermediates in the performance of catabolic functions.
The Baltic Sea is unique among the seas of the world, characterized with the busiest maritime traffic, a high population along its coast area, and the specific unique ecosystem. Large rivers from highly industrialized and agriculturally intensive countries bring high loads of agricultural nutrients (like nitrogen and phosphorous) and hazardous compounds (herbicides, antibacterial agents, oil products, phenolic chemicals etc.) into the Baltic Sea. Therefore our latest research topic has been the elucidation of the biodegradative potential of microbial communities in the Baltic Sea sediment and surface water samples. Culture dependent and independent methods have been used to provide a more accurate picture about the complex microbial communities. Some of the isolated bacterial strains have extremely interesting characteristics useful for the practical purposes in degradation of crude oil derived petroleum hydrocarbons. That is why in these cases we are generating special research projects based on particular strains. This work is done in collaboration with research institutions from Finland and Russia. Another project is ongoing with researchers from Portugal and India to analyze the natural attenuation capacity of the wastewater treatment plant of crude oil refinery and find ways for improving the degradation process. This project targets a global priority issue, i.e., reuse of industrial wastewater.
We have long time successful experiences at bioaugmentation of polluted water and sediments. In case of introducing biomass of laboratory selected bacteria to the open environment the key molecular markers (DNA fingerprints) are determined in sense to follow what happens with those bacteria in open nature. Before the field bioaugmentation experiments the behavior of bacteria in laboratory in microcosm experiments mimicking real pollution conditions is always studied.
We are responsible for the Estonian National collection of non-medical environmental and laboratory microbial strains (CELMS, http://eemb.ut.ee/ ). Collection contains great variety of indigenous environmental bacteria characterized by DNA sequences of important catabolic regions, species determining gene sequences. Part of the strains has been subjected to whole genome sequence determination. This is a basic facility for our laboratory research. The new bacterial strains obtained within research projects conducted in our department are stored at the culture collection. The intellectual property agreement between author of the bacterial strain and official representative of collection guarantees author’s rights.
Selected publications
Environmental microbiology and biotechnology group
Jaak Truu, Professor Contact: Riia 23-303 Phone: 737 5021 E-mail: jaak.truu [ät] ut.ee
Team Jaak Truu, professor Marika Truu, senior research fellow Hiie Nõlvak, research fellow Angela Peeb, PhD student Arun Kumar Devarajan, PhD studentResearch
• Kanger, K., Guilford, N. G. H., Lee, H., Nesbø, C. L., Truu, J., & Edwards, E. A. (2020). Antibiotic resistome and microbial community structure during anaerobic co-digestion of food waste, paper and cardboard. FEMS Microbiology Ecology, 96(2). https://doi.org/10.1093/femsec/fiaa006 • Truu, M., Oopkaup, K., Krustok, I., Kõiv-Vainik, M., Nõlvak, H., & Truu, J. (2019). Bacterial community activity and dynamics in the biofilm of an experimental hybrid wetland system treating greywater. Environmental Science and Pollution Research, 26(4), 4013–4026. https://doi.org/10.1007/s11356-018-3940-8 • Jørgensen, K. S., Kreutzer, A., Lehtonen, K. K., Kankaanpää, H., Rytkönen, J., Wegeberg, S., … Wang, F. (2019). The EU Horizon 2020 project GRACE: integrated oil spill response actions and environmental effects. Environmental Sciences Europe, 31(1), 44. https://doi.org/10.1186/s12302-019-0227-8 • Nõlvak, H., Truu, M., Oopkaup, K., Kanger, K., Krustok, I., Nehrenheim, E., & Truu, J. (2018). Reduction of antibiotic resistome and integron-integrase genes in laboratory-scale photobioreactors treating municipal wastewater. Water Research, 142, 363–372. https://doi.org/10.1016/j.watres.2018.06.014 • Espenberg, M., Truu, M., Mander, Ü., Kasak, K., Nõlvak, H., Ligi, T., … Truu, J. (2018). Differences in microbial community structure and nitrogen cycling in natural and drained tropical peatland soils. Scientific Reports, 8(1), 4742. https://doi.org/10.1038/s41598-018-23032-y • Truu, M., Ostonen, I., Preem, J. K., Lõhmus, K., Nõlvak, H., Ligi, T., … Truu, J. (2017). Elevated air humidity changes soil bacterial community structure in the silver birch stand. Frontiers in Microbiology, 8(APR), 557. https://doi.org/10.3389/fmicb.2017.00557 • Truu, J; Truu, Marika; Espenberg, Mikk; Nõlvak, Hiie; Juhanson, Jaanis (2015). Phytoremediation and plant-assisted bioremediation in soil and treatment wetlands: A Review. The Open Biotechnology Journal, 9 (1)
More publications
Research group in bacterial and yeast proteins
Head of the group: Triinu Visnapuu, Associate Professor in Microbiology Contact: Riia 23-302/311 Phone: +372 737 5013 E-mail: triinu.visnapuu [ät] ut.ee
People Triinu Visnapuu, Assoc. Prof. in Microbiology, PhD, triinu.visnapuu [ät] ut.ee Tiina Alamäe, Assoc. Prof. Emeritus, PhD, tiina [ät] alamae.eu Enely Ernits, BSc student Luiza Tolokonnikova, BSc studentResearch • Enzymatic synthesis of levan-type saccharides and their biotechnological applications Currently it is in the spotlight to verify the importance of human microbiome in the context of physical and mental health of the host. There are approximately 1.5 kg of microbes in the large intestine and the microbial diversity is very high. The gut microbiota can be stimulated towards healthier balance of the microbiota by consumption of healthy food and prebiotic additives, e.g. polysaccharidic food fibre, to enhance the functionality of food. There is an urgent need to develop new potential prebiotics and functional ingredients to support the gut residents of beneficial properties. In addition, there are many other potential applications of oligo- and polysaccharides: hydrating and skin-protecting component in cosmetics, stimulator of an immune system, anti-cancer and anti-viral agent in pharmaceutical industry and encapsulating agent. We have studied bacterial enzymes that can be applied to synthesize novel potential prebiotics – levan and levan-type oligosaccharides – from table sugar (sucrose) and raffinose which is found in legumes. We have optimized the enzymatic synthesis conditions and separation techniques of levan-type saccharides. We are using levansucrase from a plant-associated bacterium Pseudomonas syringae to synthesize high-molecular weight levan and fructooligosaccharides. In collaboration of Tallinn University of Technology, Center of Food and Fermentation Technologies and Institute of Chemical and Biological Physics we have shown that these saccharides are safe, and they stimulate the growth of beneficial gut bacteria including Bacteroides thetaiotaomicron. We have isolated endo-levanase of B. thetaiotaomicron which is producing short-chain functional oligosaccharides from polymeric levan. These levan-type oligosaccharides could have applications in various areas from novel prebiotics to plant-protective ingredients. We have solved the 3D structure of the endo-levanase and elucidated the reaction mechanism in collaboration with colleagues of Tallinn University of Technology. As a collaboration project with research groups of University of Tallinn and Institute of Chemical and Biological Physics we plan to study anti-viral properties of natural polysaccharides including levan and test levan as a functional component in cream matrices in collaboration with cosmetic brand Lumi. Short communication of the research in English: https://researchinestonia.eu/2019/09/26/what-should-i-eat-to-make-my-gut... • Characterization of yeast α-glucosidase proteins and their reaction products α-glucosidases are enzymes that hydrolyse α-glucosidic linkages in starch compounds and also in several plant-derived oligosaccharides, e.g. sucrose. Bakers’ yeast Saccharomyces cerevisiae needs α-glucosidases (maltase and isomaltase) to ferment sugars from malted barley which contains mostly maltose and maltotriose and isomaltose. It has been shown in S. cerevisiae that maltases and isomaltases have evolved from an ancestral enzyme with a wide substrate spectrum which was able to utilize maltose- and isomaltose-type sugars. We have shown that Ogataea (Hansenula) polymorpha α-glucosidase MAL1 has a wide substrate spectrum and therefore it is very similar to the hypothetical ancestral maltase. We have characterized a maltase from an early-diverged yeast species – Blastobotys adeninivorans. This enzyme was able to hydrolyse maltose-type saccharides and also catalyse synthesis of various oligosaccharides. In collaboration with a research group from Technical University of Denmark we are investigating the product spectrum and respective chemical bonds of synthesis products. • Characterization of enzymes with a biotechnological potential and immobilizing enzymes to carriers We are using efficient expression systems to produce heterologous proteins from pro- and eukaryotic organisms in Escherichia coli. We have successfully expressed various glucoside hydrolases (levansucrases, endo-levanase, α-glucosidases, N-acetyl hexosaminidases) for their purification, characterization and enzymatic synthesis of saccharides. Immobilization of purified enzymes to solid support or carriers enables to stabilize the enzyme and use it repeatedly in reactions. Therefore, with the same amount of enzyme it is possible to multiply the amount of reaction products obtained. We have seen that a lectin-tag or carbohydrate-binding module fused to an enzyme enables binding of the enzyme to polysaccharide beads. We are investigating the properties, stability and binding modes of biotechnologically relevant tagged enzymes. In addition, we are investigating the ways to effectively purify and recycle the enzyme.
Visnapuu, Triinu; Meldre, Aivar; Põšnograjeva, Kristina; Viigand, Katrin; Ernits, Karin; Alamäe, Tiina (2020). Characterization of a Maltase from an Early-Diverged Non-Conventional Yeast Blastobotrys adeninivorans. International Journal of Molecular Sciences, 21 (1), 297.10.3390/ijms21010297. • Visnapuu, Triinu; Teze, David; Kjeldsen, Christian; Lie, Aleksander; Duus, Jens Ollgaard; Andre-Miral, Corinne; Pedersen, Lars Haastrup; Stougaard, Peter; Svensson, Birte (2020). Identification and Characterization of a β-N-Acetylhexosaminidase with a Biosynthetic Activity from the Marine Bacterium Paraglaciecola hydrolytica S66T. International Journal of Molecular Sciences, 21 (2), ARTN 417.10.3390/ijms21020417. • Ernits, Karin; Eek, Priit; Lukk, Tiit; Visnapuu, Triinu; Alamäe, Tiina (2019). First crystal structure of an endo-levanase – the BT1760 from a human gut commensal Bacteroides thetaiotaomicron. Scientific Reports, 9 (1), 8443.10.1038/s41598-019-44785-0. • Adamberg, Kaarel; Adamberg, Signe; Ernits, Karin; Larionova, Anneli; Voor, Tiia; Jaagura, Madis; Visnapuu, Triinu; Alamäe, Tiina (2018). Composition and metabolism of fecal microbiota from normal and overweight children are differentially affected by melibiose, raffinose and raffinose-derived fructans. Anaerobe, 52, 100−110.10.1016/j.anaerobe.2018.06.009. • Viigand, Katrin; Posnograjeva, Kristina; Visnapuu, Triinu; Alamae, Tiina (2018). Genome Mining of Non-Conventional Yeasts: Search and Analysis of MAL Clusters and Proteins. Genes, 9 (7, 354), ARTN 354.10.3390/genes9070354. • Mardo, Karin; Visnapuu, Triinu; Vija, Heiki; Aasamets, Anneli; Viigand, Katrin; Alamäe, Tiina (2017). A Highly Active Endo-Levanase BT1760 of a Dominant Mammalian Gut Commensal Bacteroides thetaiotaomicron Cleaves Not Only Various Bacterial Levans, but Also Levan of Timothy Grass. PLOS ONE, 12 (1), e0169989−e0169989.10.1371/journal.pone.0169989. • Viigand, Katrin; Visnapuu, Triinu; Mardo, Karin; Aasamets Anneli; Alamäe, Tiina (2016). Maltase protein of Ogataea (Hansenula) polymorpha is a counterpart to resurrected ancestor protein ancMALS of yeast maltases and isomaltases. Yeast, 33 (8), 415−432.10.1002/yea.3157. • Bondarenko, Olesja M; Ivask, Angela; Kahru, Anne; Vija, Heiki; Titma, Tiina; Visnapuu, Meeri; Joost, Urmas; Pudova, Ksenia; Adamberg, Signe; Visnapuu, Triinu; Alamäe, Tiina. (2015). Bacterial polysaccharide levan as stabilizing, non-toxic and functional coating material for microelement-nanoparticles. Carbohydrate Polymers, 136, 710−720.10.1016/j.carbpol.2015.09.093. • Adamberg, Kaarel; Tomson, Katrin; Talve, Tiina; Pudova, Ksenia; Puurand, Marju; Visnapuu, Triinu; Alamäe, Tiina; Adamberg, Signe (2015). Levan Enhances Associated Growth of Bacteroides, Escherichia, Streptococcus and Faecalibacterium in Fecal Microbiota. PLOS ONE, 10 (12), e0144042.10.1371/journal.pone.0144042. • Visnapuu, Triinu; Mardo, Karin; Alamäe, Tiina (2015). Levansucrases of a Pseudomonas syringae pathovar as catalysts for the synthesis of potentially prebiotic oligo- and polysaccharides. New Biotechnology, 32 (6), 597−605.10.1016/j.nbt.2015.01.009.CV and publications
Professor Angela Ivask Contact: Riia 23-301 Phone +372 5398 2998 E-mail: angela.ivask [ät] ut.ee
· Pietsch, Franziska; O’Neill, Alex J.; Ivask, Angela; Jenssen, Håvard; Inkinen, Jenni; Kahru, Anne; Ahonen, Merja; Schreiber, Frank (2020). Selection of resistance by antimicrobial coatings in the healthcare setting. Journal of Hospital Infection, 106 (1), 115−125.10.1016/j.jhin.2020.06.006.
· Rosenberg, M.; Visnapuu, M.; Vija, H.; Kisand, V.; Kasemets, K.; Kahru, A.; Ivask, A. (2020). Selective antibiofilm properties and biocompatibility of nano-ZnO and nano-ZnO/Ag coated surfaces. Scientific Reports, 10 (1).10.1038/s41598-020-70169-w.
· Rosenberg, M.; Visnapuu, M.; Vija, H.; Kisand, V.; Kasemets, K.; Kahru, A.; Ivask, A. (2020). Selective antibiofilm properties and biocompatibility of nano-ZnO and nano-ZnO/Ag coated surfaces. bioRxiv.10.1101/2020.03.18.996967.
· Rosenberg M.; Ilić K.; Juganson K.; Ivask A.; Ahonen M.; Vinković Vrček I.; Kahru A. (2019). Potential ecotoxicological effects of antimicrobial surface coatings: a literature survey backed up by analysis of market reports. PeerJ, 7 (e6315).10.7717/peerj.6315.
· Rosenberg, Merilin; Azevedo, Nuno F.; Ivask, Angela (2019). Propidium iodide staining underestimates viability of adherent bacterial cells. Scientific Reports, 9.10.1038/s41598-019-42906-3.
· Rahmani, Ramin; Rosenberg, Merilin; Ivask, Angela; Kollo, Lauri (2019). Comparison of Mechanical and Antibacterial Properties of TiO2/Ag Ceramics and Ti6Al4V-TiO2/Ag Composite Materials Using Combined SLM-SPS Techniques. Metals, 9 (8), 874.10.3390/met9080874.
· Mitchell, Andrew J.; Ivask, Angela; Ju, Yi (2019). Quantitative Measurement of Cell-Nanoparticle Interactions Using Mass Cytometry. In: MASS CYTOMETRY: METHODS AND PROTOCOLS (227−241). TOTOWA: HUMANA PRESS INC. (1989).10.1007/978-1-4939-9454-0_15.
· Bastos, Carlos A. P.; Faria, Nuno; Ivask, Angela; Bondarenko, Olesja M.; Kahru, Anne; Powell, Jonathan (2018). Ligand-Doped Copper Oxo-hydroxide Nanoparticles are Effective Antimicrobials. Nanoscale Research Letters, 13, ARTN 111.10.1186/s11671-018-2520-7.
· Visnapuu, Meeri; Rosenberg, Merilin; Truska, Egle; Nõmmiste, Ergo; Šutka, Andris; Kahru, Anne; Rähn, Mihkel; Vija, Heiki; Orupõld, Kaja; Kisand, Vambola; Ivask, Angela (2018). UVA-induced antimicrobial activity of ZnO/Ag nanocomposite covered surfaces. Colloids and Surfaces B: Biointerfaces, 169, 222−232.10.1016/j.colsurfb.2018.05.009.
· Kubo, Anna-Liisa; Capjak, Ivona; VinkovićVrček, Ivana; Bondarenko, Olesja, M.; Kurvet, Imbi; Vija, Heiki; Ivask, Angela; Kasemets, Kaja; Kahru, Anne (2018). Antimicrobial potency of differently coated 10 and 50 nm silver nanoparticles against clinically relevant bacteria Escherichia coli and Staphylococcus aureus. Colloids and Surfaces B: Biointerfaces, 170, 401−410.10.1016/j.colsurfb.2018.06.027.
· Rosenberg, Merilin; Vija, Heiki; Kahru, Anne; Keevil, C. William; Ivask, Angela (2018). Rapid in situ assessment of Cu-ion mediated effects and antibacterial efficacy of copper surfaces. Scientific Reports, 8 (8172 ), 1−12.10.1038/s41598-018-26391-8.
· Ahonen, M.; Kahru, A.; Ivask, A.; Kasemets, K.; Kõljalg,S.; Mantecca, P.; Vinković Vrček, I.; Keinänen-Toivola, M.; Crijns, F. (2017). Proactive Approach for Safe Use of Antimicrobial Coatings in Healthcare Settings: Opinion of the COST Action Network AMiCI. International Journal of Environmental Research and Public Health, 14 (4), 366.10.3390/ijerph14040366.
· Ivask, A.; Mitchell, A.J.; Malysheva, A.; Voelcker, N.H.; Lombi, E. (2017). Methodologies and approaches for the analysis of cell-nanoparticle interactions. WIREs Nanomedicine and Nanobiotechnology, e1486.10.1002/wnan.1486.
· Ivask, Angela; Visnapuu, Meeri; Vallotton, Pascal; Marzouk, Ezzat R.; Lombi, Enzo; Voelcker, Nicolas H. (2016). Quantitative multimodal analyses of silver nanoparticle-cell interactions: Implications for cytotoxicity. NanoImpact, 1, 29−38.10.1016/j.impact.2016.02.003.
ja siia tuleb sisu.
This website uses cookies to improve your user experience. The university website does not process or collect personal data. This website uses Facebook Pixel and Google Analytics. Read more in the Data Protection Policy.