Kristi Reispass

Hüpotermia mõju antioksüdatiivsele süsteemile

Bakalaureusetöö

Juhendajad
Hendrik Luuk
Kersti Lilleväli

TARTU 2014
SISUKORD

SISUKORD .. 2
KASUTATUD LÜHENDID .. 4
SISSEJUHATUS .. 5
1. KIRJANDUSE ÜLEVAADE ... 6
 1.1. Terapeutiline hüpotermia ... 6
 1.2. Hüpotermia mõju geeniekspressioonile .. 8
 1.2.1. Nrf2 kontrollitavad signaalrajad .. 9
 1.2.2. Glutamaat-tsüstein ligaas (GCL) .. 10
 1.2.3. NAD(P)H dehüdrogenaasi kinoon 1 (NQO1) .. 10
 1.2.4. Sulfredoksiin 1 (Srxn1) ... 11
 1.2.5. Tioredoksiini reduktaas 1 (Trxrd1) ... 11
 1.2.6. Glutatiooni süntetaas (Gss) ... 11
 1.2.7. Külmatundlik mRNA-d siduv valk (Cirbp) ... 12
2. EKSPERIMENTAALOSA ... 13
 2.1. Töö eesmärgid ... 13
 2.2. Materjal ja metoodika .. 13
 2.2.1. Peamine rakukultuur hüpotermia mudelina .. 13
 2.2.2. Mikrokiibi eksperiment ... 13
 2.2.3. Kvantitatiivne reaalaja PCR .. 13
 2.2.4. Glutatioonitasemete määramine ... 14
 2.2.5. Statistiline analüüs ... 15
 2.3. Tulemused .. 15
 2.3.1. Mikrokiibi analüüs ... 15
 2.3.2. Geeniekspressiooni analüüs kvantitatiivse reaalaja PCRiga 16
 2.3.1. Glutatiooni mõõtmise tulemused .. 19
 2.3.2. Glutatiooni mõõtmiste statistiline analüüs ... 20
 2.4. Arutelu .. 20
Kokkuvõte ... 22
The effects of hypothermia to antioxidative system... 23
 SUMMARY ... 23
Tänuavaldused .. 24
Kasutatud kirjandus .. 24
Kasutatud veebiaadressid .. 29
Lihtlitsents lõputöö reprodutseerimiseks ja lõputöö üldsusele kättesaadavaks tegemiseks 30
KASUTATUD LÜHENDID

AMPA – α-amino-3-hüdroksüül-5-metüül-4-isoksasool-propionaat
AP – alkaline phophatase (aluseline fosfataas)
Cirbp – cold-inducible RNA binging protein
DTNB – 5,5’-ditio-bis-2-(nitrobensoehape) ehk Ellmani regent
FBS – fetal bovine serum (veise looteseerum)
GluR2 – glutamaadi retseptor 2
GSH – glutatioon
GSSG – glutatioon disulfiid
HRP – horse radish peroxidase (märarõika peroksidaas)
KNS – kesknärvisüsteem
TH – terapeutiline hüpotermia
TNB – 5-tio-2-nitrobensoehape
SISSEJUHATUS

Käesoleva töö eesmärk on uurida, kas hüpotermia mõjutab antioksüdatiivset süsteemi ning sellega seotud geenide ekspressiooni. Selleks, et paremini mõista hüputermia spetsiifilist geeniekspresiooni vastus teostati mikrokiibi eksperiment. Lisaks määrasime hüpotermia (32C) ja normotermia (37kraadi) tingimustes glutatiooni tasemed hiire embrüonaalsetes fibroblastides ning qPCR meetodiga mõõtsime glutatiooni ning tioredoksiini sünteesiradades oluliste geenide ekspressiooni tasemed. Katsed viidi läbi Tartu Ülikooli bio- ja siirdemeditsiini instituudis.
1. KIRJANDUSE ÜLEVAADE

1.1. Terapeutiline hüpotermia

Lisaks on hüpotermia terapeutilist mõju näidatud ka aju ja seljaaju traumad puhul (Dietrich ja Bramlett, 2010; Dietrich jt., 2009). Hüpotermial on tähtis osa ka suspended animation rakendustes, mis aeglustavad või seiskavad ainevahetuse eest põhjustatud surma.

Hüpotermia neuroprotektiivse toime seisukohalt on kõige rohkem uuritud fokaalse ja globaalse ajuisheemia loomudeleid. Globaalse ajuisheemia mudelid üritavad imiteerida südameseiskumise tagajärjel tekkinud ajuisheemiat, fokaalse ajuisheemia mudelites üritatakse luua insulti meenutavate ajuisheemid. Fokaalse ajuisheemia mudelid saab jaotada veel püsiva oklusiooni mudeliteks, kus veresoon jääb blokeerituna (mis kehtib enamik kliiniliste insultide puhul), ja ajutise oklusiooni mudeliteks, kus veresoon avatakse uuesti peale teatud ajaperioodi. Suurem osa laboratoorse test hüpotermiauuringutest kasutavad vääikesid närilisi, kelle külmutamisedks külmutatavate jahutavate teki vôi pritsides uinutatud looma karvastikule vett või alkoholi. Ärkvel ja vabalt liikuvate loomade jahutamist ühest päevast pikemate perioodide jooksul on võimalik saavutada automaatsete vihmutussüsteemide ja ventilaatoritega (Colbourne jt., 1996).

Terapeutiline jahutamine on järjekindlalt näidanud pidurdavat mõju eksitotoksiliste aminohapete, näiteks glutamaadi, kuhumisele või vabanemisele. Seda võib seostada jahutamise ATP-d säilitava efektiiga kudekes. ATP on vajalik ioongradiendi hoidmiseks ja kui kontsentratsioonid on häiritud, mis juhtub isheemia puhul, tekib kalsiumi sissevool rakku ja see viib glutamaadi suurenened vabanemiseni. (Lee jt., 1999). Hüpotermia võib ennetada eksitotoksilise tagajärgi kalsiumi sissevoolu piiramisega AMPA (α-amino-3-hüdrooksüül-5-metüül-4-isoksasool-propionaadi) kanalite kaudu. Glutamaadi retseptor 2 (GluR2) alal hüpotermia võib ennetada eksitotoksilisuse tagajärgi kaltsiumi sissevoolu ja selle allaregulatsioon isheemia ajal (Colbourne jt., 2003) võib viia kaltsiumi liigse sisenemiseni. Ühes uuringus näidati, et globaalse ajuisheemia mudelis summutab hüpotermia isheemiast tingitud GluR2 allaregulatsiooni (Colbourne jt., 2003).

1.2. Hüpotermia mõju geeniekspressioonile
Joonis 1. Nrf2-Keap signaalirada ja mõjutatavad geenid
(https://www.frontiersin.org/files/Articles/35319/fonc-02-00200-HTML/image_m/fonc-02-00200-g001.jpg)

Nrf2-Keap1 signaalirada on oluline, et rakud tuleksid toime oksüdatiivse stressiga. Normaalses olukorras on transkriptsioonifaktor Nrf2 seotud Keap1-ga, mis hoiab teda tsütoplasmas ja suunab degradatsiooni (Itoh jt., 1999). Oksüdatiivse stressi korral Nrf2 ei degradeerita, vaid ta siseneb tuuma ja seob DNA promootoriga, mille tulemusena käivitatakse antioksüdatiivsete geenide transkriptsioon ja nende ekspressiooni hoitakse pidevalt kõrgel tasemel (Wakabayashi jt., 2003).

1.2.1. Nrf2 kontrollitavad signaalrajad
Esimene on glutatiooni (GSH) tootmine ja taastamine, mida reguleerivad Gclm (glutamaat-tsüsteiin ligaasi kompleksi modifitseerimissubühik), Gclc (GCL katalüütiline subühik), Xct (tsüstiin/glutamaat transporter) ja Gsr (glutatiooni reduktaas). Teiseks on GSH kasutamine, mida reguleerivad glutatiooni S-transferaasid (Gsta1, Gsta2, Gsta3, Gsta5, Gstm1, Gstm2, Gstm3 ja Gstp1) ja Gpx2 (glutatiooni peroksidaas 2). Kolmandaks on TXN (tioredoosiini) tootmine, taastamine ja kasutamine, mida reguleerivad Txn1, Txnrd1 (tioredoosiini reduktaas 1) ja Prdx1 (peroksiredoosiini 1). Neljas on NADPH tootmine, mida kontrollib G6pd (glükoos-6-fosfaadi dehüdrogenaas), Phgdh (fosfoglütseraadi dehüdrogenaas), Mel (malaadi ensüüm 1) ja Idh1 (isotsitraadi dehüdrogenaas 1). Nii GSH kui TXN kasutavad reaktiivsete hapnikuühendite (ROS) redutseerimise järel NADPH-d iseenda taastumiseks. Need neli gruppi antioksüdantide geene, mille ekspressiooni tõstab Nrf2, toimivad üksteist täiendavalt. Lisaks reguleerib Nrf2 ka selliseid antioksüdante nagu Nqo1 (NAD(P)H kinooni oksidoreduktasa 1) ja rauda siduvaid ensüüme nagu Hmox1 (heemi oksügenaas), Fih ja Fil.
(ferritiini raske ja kerge ahel) (Gorrini jt., 2013), samuti aktiveerib Nrf2 Srxn1 (sulfredoksiin 1) ekspressiooni (Hartikainen jt., 2012). Kuna olulisemateks antioksüdantideks peetakse glutatiooni ja tioredoksiini süsteeme, siis on need süsteemid peamiseks uurimisobjektkiks.

1.2.2. Glutamaat-tsüsteini ligaas (GCL)

1.2.3. NAD(P)H dehüdrogenaasi kinoon 1 (NQO1)

1.2.4. Sulfredoksiin 1 (Srxn1)

1.2.5. Tioredoksiini reduktaas 1 (Trxnr1)

1.2.6. Glutatiooni süntetaas (Gss)
Glutatiooni süntetaas osaleb gamma-glutamüüli tsüklis, mis toimib suuremas osas rakkudes. Tsüklis toimuvad reaktsioonid on vajalikud glutatiooni sünteesiks. Glutatiooni süntetaas katalüüsib glutatiooni ATP-sõltuvat sünteessi gamma-glutamüülitüsteinist (gamma-Glu-Cys) ja glutüsiinist. Üleekspressioon võib viia lausa kahekordse glutatiooni taseme tõusuni. Ka
gamma-glutamiintsüstein võib vajaduse korral käituda antioksüdandina, kuid täielikult glutatiooni asendada ei suuda (Grant jt., 1997).

1.2.7. Külmatundlik mRNA-d siduv Valk (Cirbp)

2. EKSPERIMENTAALOSA

2.1. Töö eesmärgid

Töö eesmärk oli tuvastada, kas ja mil määril mõjutab hüpotermia rakusisest antiosküdatiivset potentsiaali. Selleks hindasime hüpotermia mõju glutatiiooni tasemele ning antioksüdatiivses süsteemis oluliste geenide ekspressioonile.

2.2. Materjal ja metoodika

2.2.1. Peamine rakukultuur hüpotermia mudelina

Umbes 1 miljon primaarset hiire embrüonaalset fibroblasti (Millipore) külvati 100mm kultuurtassidele ja kasvatati DMEM (kõrg glükoosisisaldusega 4.5 g/l, lisandina 10% FBS ja L-glutamiin, PAA) söömel normaalsetes tingimustes (õhuhapnik, 5% CO₂, 37 °C) 60-70% konfluentsuseni. Hüpotermia testimiseks langetati temperatuur rakukultuuri inkubaatoris 32 °C-ni, kontrollrakud kasvasid 37 °C juures. Teise rakulini kasutati kvantitatiiivse reaalaja PCRis Nrf2 knockout hire embrüonaalseid fibroblaste, mida kasutatakse tihti oksüdatiivse stressi uuringutes.

2.2.2. Mikrokiibi eksperiment

Hiire embrüonaalsete fibroplastidega tassid jagati kolmesteks gruppideks, gruppe inkubeeriti 32 °C juures teatud perioodi (0, 0.5, 1, 2, 4, 8 või 18 h). RNA eraldati Trizoliga (Life) ja grupi kolm proovi ühildati. Proovidest tehti geeniekspressiooni profiliid Mouse Gene 1.0 ST kiibile (Affymetrix) tootja protokolli järgi. RNA amplifitseeriti ja märgistati Ambion WT Expression Kitiga (Applied Biosystems) tootja juhendi järgi. Sisendina kasutati 250 ng RNAd. Märgistatud proovid hübридiseeriti Mouse Gene 1.0 ST Genechip kiibile (Affymetrix). Kiibid pesti ja värviti fükoerütri-conjugeeritud streptavidiiniga (SAPE) Affymetrix Fluidics Station 450 abil ja kiibid skaneeriti Affymetrix Genearray 3000 skanneriga, tekitades fluoresentsentspildid Affymetrix Genechip protokolli järgi. Genechip Command Console (AGCC, Affymetrix) tarkvara abiga saadi CEL failid.

2.2.3. Kvantitatiiivne reaalaja PCR

Kvantitatiiivse reaalaja PCR-i eksperimendis kasutati viit bioloogilist replikaati ühe grupi kohta. Hiire embrüonaalseid fibroblaste kasvatati vastavalt 24h 37°C (normotermia) või 32°C (kERGE hüpotermia) juures. Totaal-RNA eraldati rakkudest Trizoliga (Invitrogen) tootja protokolli järgi. Üheahelaline cDNA sünteesiti juhuslike heksameeridega (Invitrogen) ja SuperScript™ III pöödtranskriptaasi (Invitrogen). Tabelis 1 on näha kasutatud Taqman assayd (Applied Biosystems). qPCR reaktsioonid jooksutati ABI PRISM 7900HT Fast Real-
Time PCR System seadmetel ja tulemused kvantifitseeriti ABI PRISM 7900 SDS 2.2.2 tarkvaraga.

Tabel 1. Kvantitatiivse reaalaja PCRi Taqman assayd

<table>
<thead>
<tr>
<th>Geeni sümbol</th>
<th>Assay ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cirbp</td>
<td>Mm00483336_g1</td>
</tr>
<tr>
<td>Nqo1</td>
<td>Mm01253561_m1</td>
</tr>
<tr>
<td>Gss</td>
<td>Mm00515065_m1</td>
</tr>
<tr>
<td>Txnrd1</td>
<td>Mm00443675_m1</td>
</tr>
<tr>
<td>Gclc</td>
<td>Mm00802655_m1</td>
</tr>
<tr>
<td>Srxn1</td>
<td>Mm00769566_m1</td>
</tr>
<tr>
<td>Ywhaz</td>
<td>Mm01158416_g1 (sisemine standard)</td>
</tr>
</tbody>
</table>

2.2.4. Glutatioonitasemete määramine

Glutatiooni tasemete määramiseks hüpotermia ja normotermia tingimustes (24h) kasutati hiire embrüonaalseid fibroblaste. Mõlemas grupis oli viis bioloogilist replikaati. Rakkude eemaldamiseks substraadilt kasutati kummimiilitats ning rakud tsentrifuugiti (960g toatemperatuuril) põhja jääkülmas PBS-is. Valgulüsaadi valmistamiseks kasutati 1x MES puhvrit. Rakke sonikeeriti 10min Diagenode’i Bioruptor ultrahelisonikaatoriga, misjärel tsentrifuugiti valgulüsaati 15min 15 000g 4 ºC juures. Valkude sadestamiseks kasutati 100 µl 0.4 M metafosforhapet ning tsentrifuugiti 5min 5000g 4 ºC juures.

Glutatiooni tasemete määramiseks kasutati Cayman chemicals Glutathione Assay Kit'i vastavalt tootja poolt välja töötatud protokollile. Antud kit kasutab glutatiooni ning glutatiooni disulfiidi mõõtmiseks glutatiooni reduktasii põhinevat reaktsiooni. GSH toolgrupp reageerib DTNB-ga (5,5'-ditio-bis-2-nitrobensoehape ehk Ellmani reagent) reaktsiooniseisus, kollane 5-tio-2-nitrobensoehape (TNB).TNB neeldumist mõõdeti 405nm juures.

Standardlahuste neeldumiste tasemete määramiseks (Tabel3 alusel tehti GSH kontsentratsiooni standardkõver MEF rakkudele (Joonis 4). Kuna neeldumised olid tehtud kahes korduses, siis võeti tulemuste keskmised ja kõigist neeldumisväärtustest lahatati standardlahus A neeldumine, mis andis lõppneeldumisväärtuse ehk proovidelt eemaldati taust.

Üldise valgu kontsentratsiooni määramiseks tehti samuti neeldumiskõver, kuid 700 nm juures. Proovide neeldumisväärtuste ja standardkõverate võrrandite järgi leiti proovide kontsentratsioonid. Seejärel korrigeeriti nii GSH kui valgu kontsentratsioonid lahenduste suhtes (GSH 5x ja Valk 10x) ning arvutati GSH kontsentratsiooni suhe valgu kontsentratsiooni kohta. Glutatiooni kontsentratsioonide võrdlemiseks tehti karp-vurrud diagrammid (Joonis 5).
2.2.5. Statistiline analüüs
Kiip analüüsiti DEMI-ga kasutades Kendalli astak-korrelatsiooni testi, leiti nii p-väärtus kui FDR-väärtus, mis on selle kate puhul täpsem statistilist olulisust määrav arv kui p-väärtus. Kvantitativse PCRi tulemuste võrdlemiseks kasutati mitteparameetrilist Wilcoxonini testi. P-väärtus alla 0.05 loeti statistiliselt oluliseks.
Glutatiooni taseme võrdlemiseks normotermia ja hüpotermia tingimustes kasutati mitteparameetrilist Wilcoxonini testi ja tunnuse normaaljaotust eeldavat t-testi. P-väärtus alla 0.05 loeti statistiliselt oluliseks.

2.3. Tulemused

2.3.1. Mikrokiibi analüüs
Viie peamise hüpotermia tingimustes ülesreguleeritud geeni hulgast leidsime Cirbp-i, mis on tuntud hüpotermiatundlik geen (Fujita, 1999; Nishiyama jt., 1997). Lisaks tuvastasime mitmeid antioksüdatiivsete süsteemidega seotud geene, mis tunduvad hüpotermia poolt üles reguleeritud.

Tabel 2. Hüpotermia kestvuse pikenemisel pidevalt tõusnud ekspressioonitasemega geenid ja nendega seotud antioksüdatiivsed süsteemid

<table>
<thead>
<tr>
<th>Geeni ID</th>
<th>Geeni sümbol</th>
<th>P-väärtus</th>
<th>FDR-väärtus</th>
<th>Süsteem</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENSMUSG00000003849</td>
<td>Nqo1</td>
<td>9.04E-35</td>
<td>4.72E-30</td>
<td>Kinooni detoksifikatsioon</td>
</tr>
<tr>
<td>ENSMUSG0000045193</td>
<td>Cirbp</td>
<td>1.30E-29</td>
<td>1.13E-25</td>
<td></td>
</tr>
<tr>
<td>ENSMUSG0000032802</td>
<td>Srxn1</td>
<td>1.23E-19</td>
<td>2.14E-16</td>
<td>Glutatioon</td>
</tr>
<tr>
<td>ENSMUSG0000027610</td>
<td>Gss</td>
<td>1.08E-13</td>
<td>4.75E-11</td>
<td>Glutatioon</td>
</tr>
<tr>
<td>ENSMUSG0000020250</td>
<td>Txnrd1</td>
<td>4.29E-11</td>
<td>9.83E-09</td>
<td>Tioredoksiin</td>
</tr>
<tr>
<td>ENSMUSG0000032350</td>
<td>Gclc</td>
<td>4.29E-11</td>
<td>9.83E-09</td>
<td>Glutatioon</td>
</tr>
<tr>
<td>ENSMUSG000000811</td>
<td>Txnrd3</td>
<td>9.85E-09</td>
<td>1.19E-06</td>
<td>Tioredoksiin</td>
</tr>
</tbody>
</table>

Nqo1 – NAD(P)H dehüdrogenaasi kinoon 1; Srxn1 – sulfiredoksiin 1; Gss – glutatiooni süntetaas; Txnrd1 – tioredoksiini reduktasa 1; Gclc – glutamaat-tsüsteini ligaasi katalüütiline subühik; Txnrd3 – tioredoksiini reduktasa 3
2.3.2. Geeniekspressiooni analüüs kvantitiivse reaalaja PCRiga

![Cirbp ekspresioonitaseted MEF wt ja Nrf2KO rakkudes normotermias ja hüpotermias](image1)

Joonis 2. *Cirbp* ekspresioonitaseted MEF wt ja Nrf2KO rakkudes normotermias ja hüpotermias

Nii metsikutüüpi (WT) embrüonaalsetes fibroblastides (p-väärtus 0.007937) kui ka Nrf2- puudulikkusega fibroblastides (Nrf2KO) (p-väärtus 0.007937) oli *Cirbp* ekspresioonitase hüpotermia tingimustes tõusnud. *Cirbp* tase tundub ühtlane wt ja Nrf2KO rakkudes, mis näitab, et Nrf2 ekspresioon *Cirbp* ei mõjuta.

![Nqo1 ekspresioonitaseted MEF wt ja Nrf2KO rakkudes normotermias ja hüpotermias](image2)

Joonis 3. *Nqo1* ekspresioonitaseted MEF wt ja Nrf2KO rakkudes normotermias ja hüpotermias
Nqo1 ekspressioonitase on metsiktüüpi embrüonaalsetes fibroblastides (WT) hüpotermia tingimustes tõusnud (p-vaartus 0.007937), kuid Nrf2-puudulikkusega embrüonaalsetes fibroblastides (Nrf2KO) statistilist erinevust märgata ei olnud (p-vaartus 0.09524). Samas on näha, et Nrf2 puudulikes rakkudes on Nqo1 ekspressioon metsiktüüpi rakkudega võrreldes ühtlaselt madal.

Joonis 4. Srxn1 ekspressioonitasemad MEF wt ja Nrf2KO rakkudes normotermias ja hüpotermias.

Srxn1 on hüpotermias rohkem ekspresseeritud nii metsiktüüpi (WT) (p-vaartus 0.007937) kui mõõdukalt ka Nrf2 puudulikkusega (Nrf2KO) rakkudes (p-vaartus 0.05556). Üldiselt on Srxn1 tase Nrf2KO rakkudes võrreldes WT-ga langenud.
Joonis 5. *Gss* ekspressioonitasemed MEF wt ja Nrf2KO rakkudes normotermias ja hüpotermias. *Gss* ekspressioonitasemed metsiktüüpi (WT) rakkudes statistilist erinevust ei näidanud (p-väärtus 0.4206), kuid Nrf2 puudulikes rakkudes (Nrf2KO) on näha statistiliselt eristatava ekspressioonitaseme tõusu (p-väärtus 0.007937). *Gss* üldine ekspressioonitase on Nrf2KO rakkudes langenud võrreldes wt rakkudega.

Joonis 6. *Gclc* ekspressioonitasemed MEF wt ja Nrf2KO rakkudes normotermias ja hüpotermias. Hüpotermiatase ei tundu *Gclc* ekspressioonitaset mõjutavat ei metsiktüüpi (WT) (p-väärtus 0.09524) ega Nrf2-puudulikes (Nrf2KO) fibroblastides (p-väärtus 0.2222), samas on Gclc üldine tase Nrf2KO rakkudes langenud.
2.3.1. Glutatiooni mõõtmise tulemused

Tabel 3. GSH standardi neeldumised, nende keskmised ja nullkontsentratsiooni vastu lähtestatud keskmised MEF rakkude jaoks.

<table>
<thead>
<tr>
<th>GSH (µM)</th>
<th>A_{405}</th>
<th>Keskmine</th>
<th>Nullitud keskmine</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0,231</td>
<td>0,229</td>
<td>0,23</td>
</tr>
<tr>
<td>0,5</td>
<td>0,277</td>
<td>0,282</td>
<td>0,2795</td>
</tr>
<tr>
<td>1</td>
<td>0,312</td>
<td>0,312</td>
<td>0,312</td>
</tr>
<tr>
<td>2</td>
<td>0,383</td>
<td>0,386</td>
<td>0,3845</td>
</tr>
<tr>
<td>4</td>
<td>0,513</td>
<td>0,508</td>
<td>0,5105</td>
</tr>
<tr>
<td>8</td>
<td>0,767</td>
<td>0,753</td>
<td>0,76</td>
</tr>
<tr>
<td>12</td>
<td>0,947</td>
<td>0,945</td>
<td>0,946</td>
</tr>
<tr>
<td>16</td>
<td>1,124</td>
<td>1,128</td>
<td>1,126</td>
</tr>
</tbody>
</table>

Joonis 7. MEF rakkude glutatiooni mõõtmise standardköver. On näha peaaegu lineaarne seos glutatiooni kontsentratsiooni ja neeldumise vahel 405 nm juures.
2.3.2. Glutatiooni mõõtmiste statistiline analüüs
Testimine andis olulise statistilise erinevuse nii Wilcoxoni kui t-testiga. MEF rakkudel oli Wilcoxoni testiga p-väärtus 0.0303 ja t-testiga 0.01298

2.4. Arutelu
Käesolevas töös leidsime, et rakukultuuris indutseerib hüpotermia (32 ºC) hüpotermiatundlikku Cirbp geeni ning Nrf2-märklaudgeenide (Nqo1, Srxn1, Gss, Txnrd1, Gclc) transkriptsiooni.
Kvantitatiivse PCRi tulemused näitasid samuti hüpotermia seost Cirbpi ekspressioonitaseme tõusuga nii metsiktüüpi kui Nrf2-puudulikes rakkudes. Cirbpi üldine ekspressioonitase püsis samaväärne nii WT kui Nrf2KO rakkudes, seega on näha, et Nrf2 glutatiooni ekspressiooni ei mõjuta.
Nqo1 ekspressioonitase oli hüpotermia mõjul tõusnud metsiktüüpi rakkudes, Nrf2-puudulikes rakkudes ei suudetud tuvastada statistilist olulist erinevust. Väga hästi on näha Nrf2 mõju Nqo1 ekspressioonile, sest Nrf2-puudulikes rakkudes on ekspressioonitase oluliselt madalam kui metsiktüüpi fibroblastides.
Srxn1 ekspressioonitase oli hüpotermiatingimustes tõusnud nii metsiktüüpi rakkudes kui ka Nrf2-puudulikes rakkudes. On näha Nrf2 mõju üldisele Srxn1 ekspressioonitasemele, mis on Nrf2-puudulikes rakkudes madalam kui metsiktüüpi rakkudes.

Gss ekspressioonitase metsiktüüpi rakkudes hüpotermia mõjul ei muutunud, kuid Nrf2-puudulikes rakkudes oli näha ekspressiooni tõusu. Samas oli Nrf2-puudulikes rakkudes Gss ekspressioonitase siiski madalam kui metsiktüüpi rakkudes. Tundub, et Nrf2 indutseerib ekspressioonitaset, kuid ainult teatud piirini. Samas miski peale Nrf2 mõjutab selle ekspressiooni, kuna muidu ei tohiks Nrf2-puudulikes rakkudes olla näha ekspressioonitaseme tõusu.

Gclc ekspressioonitase ei tundu olevat mõjutatud hüpotermiaast, samas on selgelt näha Nrf2 mõju, sest Nrf2-puudulikes rakkudes on ekspressioonitasemed palju madalamad kui metsiktüüpi rakkudes.

Samuti ilmnes hiire embrüonaalsetes fibroblastides hüpotermia tingimustes (32 °C) suurem glutatiaooni redutseeitud vormi (GSH) tase, mis näitab, et antioksüdatiivne süsteem toimib.
Kokkuvõte

Selle töö eesmärgideks oli leida, kas ja kuidas hüpotermia mõjutab rakusisest antioksüdatiivset potentsiaali. Leidsime, et hüpotermia tõstab nii Cirbp kui ka mitme Nrf2 märklaudgeeni (Nqo1 ja Srxn1) eksspressioonitaset. Nrf2 Cirbpi eksspressioonitaset ei mõjutanud, kuid Nqo1, Srxn1, Gclc ja Gssi puhul oli näha, et vähenedud Nrf2 tase vähendas ka nende geenid eksspressioonitaset.

Kindlasti on tegelik pilt palju laiem ja keerulisem, seega tuleks teha palju rohkem teste erinevate geenide ja geeniproduktide uurimiseks, et saada parem ülevaade rakus toimuvast hüpotermia tingimustes. Eriti tähtis oleks välja selgitada, kuidas toimib neuroprotektiivne võime ajurakkudes.
The effects of hypothermia on the antioxidative system
Kristi Reispass

SUMMARY
Hypothermia is a situation where the body core temperature falls below 35.0 °C (95.0 °F). Targeted temperature management (TTM) previously known as therapeutic hypothermia or protective hypothermia is active treatment that tries to achieve and maintain a specific body temperature in a person for a specific duration of time in an effort to improve health outcomes (Peberdy et al., 2010). This is done in an attempt to reduce the risk of tissue injury from lack of blood flow (Bernard et al., 2002). Periods of poor blood flow may be due to cardiac arrest or the blockage of an artery by a clot as in the case of a stroke. Targeted temperature management is thought to prevent brain injury by several methods including decreasing the brain's oxygen demand, reducing the production of neurotransmitters like glutamate, as well as reducing free radicals that might damage the brain. The lowering of body temperature may be accomplished by many means including the use of cooling blankets, cooling helmets, cooling catheters, ice packs and ice water lavage.

Targeted temperature management improves survival and brain function following resuscitation from cardiac arrest (Arrich et al., 2012). Evidence supports its use following certain types of cardiac arrest in which an individual does not regain consciousness (Peberdy et al., 2010). Targeted temperature management following traumatic brain injury has shown mixed results with some studies showing benefits in survival and brain function while other show no clear benefit (Sydenham et al., 2009). While associated with some complications, these are generally mild (Xiao et al., 2012).

The goal of this study was to find out if and how hypothermia affects intracellular antioxidative potential. We found that hypothermia upregulates Cirbp and also several Nrf2-induced genes such as Nqo1 and Srxn1. Nrf2 had no effect on Cirbp expression, but Nqo1, Srxn1, Gss and Gclc all showed that reduced levels of Nrf2 also reduced the expression of those genes.
Tänuavalused

Sooviksin tänada Hendrikut ja Kattri-Liisi, et nende kannatus minuga ei katkenud.

Kasutatud kirjandus

Arrich, J; Holzer, M; Havel, C; Mülner, M; Herkner, H (2012). Hypothermia for neuroprotection in adults after cardiopulmonary resuscitation. The Cochrane database of systematic reviews. 9

Sydenham, E; Roberts I; Alderson P. (2009). "Hypothermia for traumatic head injury.". Cochrane Database of Systematic Reviews

Kasutatud veebiaadressid

Lihtlitsents lõputöö reprodutseerimiseks ja lõputöö üldsusele kättesaadavaks tegemiseks

Mina, Kristi Reispass (sünnikuupäev: 27.11.1992)

1. annan Tartu Ülikoolile tasuta loa (lihtlitsentsi) enda loodud teose „Hüpotermia mõju antioksüdatiivsele süsteemile“ mille juhendajad on Hendrik Luuk ja Kersti Lilleväli

1.1. reprodutseerimiseks säilitamise ja üldsusele kättesaadavaks tegemise eesmärgil, sealhulgas digitaalarhiivi DSpace-is lisamise eesmärgil kuni autoriõiguse kehtivuse tähtaja lõppemiseni;

1.2. üldsusele kättesaadavaks tegemiseks Tartu Ülikooli veebikeskkonna kaudu, sealhulgas digitaalarhiivi DSpace’i kaudu kuni autoriõiguse kehtivuse tähtaja lõppemiseni.

2. olen teadlik, et punktis 1 nimetatud õigused jäävad alles ka autorile.

3. kinnitan, et lihtlitsentsi andmisega ei rikuta teiste isikute intellektuaalomandi ega isikuandmete kaitse seadusest tulenevaid õigusi.

Tartus, 25.05.2015