Linda-Marie Kimmel

Fenoolsed ühendid kui fütopatogeeni Pectobacterium wasabiae voogamist kontrollivad signaalmolekulid

Bakalaureusetöö (12 EAP)

Juhendajad PhD Andres Mäe
bioloogiakandidaat Tiina Alamäe

TARTU 2016
Fenoolsed ühendid kui fütopatogeeni *Pectobacterium wasabiae* voogamist kontrollivad signaal molekulid

Taimepatogeenide levimise piiramiseks on oluline mõista nende liikumist taimes. Selleks kasutatakse meie uurimisgrupis mudelorganismina märgmädanikku põhjustavat *Pectobacterium wasabiae* SCC3193 tüve. Selles bakalaurusetöös analüüsitakse nii metanooliga kartulimugulatest ekstraheeritud fenoolsete ühendite kui ka üksikute fenoolsete ühendite, nagu salitsüülhape ja klorogeenhape, mõju mudelorganismi voogamisele *in vitro*.

Märksõnad: *Pectobacterium wasabiae*, fütopatogeen, märgmädanik, salitsüülhape, voogamine

CERCS: B230 Mikrobioloogia, bakterioloogia, viroloogia, mükoloogia

To better limit the spread of plant pathogens, it is important to understand their motility and moving in a plant. For this, our research group uses a modelorganism *Pectobacterium wasabiae* SCC3193, that causes soft rot. In this study we examine effects of phenolic compounds such as salicylic and chlorogenic acid on swarming of this modelorganism.

Key words: *Pectobacterium wasabiae*, phytopathogen, salicylic acid, soft rot, swarming

CERCS: B230 Microbiology, bacteriology, virology, mycology
SISUKORD

SISUKORD .. 3
KASUTATUD LÜHENDID ... 5
SISSEJUHATUS .. 7

1. KIRJANDUSE ÜLEVAADE ... 8
 1.1. Märgmädanikku põhjustavad bakterid .. 8
 1.2. Pectobacterium wasabie .. 9
 1.3. Pectobacterium wasabie virulentsusfaktorid .. 10
 1.3.1. PCWDE .. 11
 1.3.2. Nip valk .. 12
 1.3.3. Füsioloogilised protsessid taimes ... 13
 1.4. Virulentsusfaktorite regulatsioon .. 15
 1.5. Pectobacterium wasabie ja liikuvus ... 17
 1.5.1. Voogamine ... 17
 1.5.2. Voogamise regulatsioon .. 19

2. EKSPERIMENTAALNE OSA .. 21
 2.1. Töö eesmärgid ... 21
 2.2. Materjalid ja metoodika .. 22
 2.2.1. Kasutatud bakteritüved ja plasmiidid ... 22
 2.2.2. Söötmed ja kasvatamine ... 23
 2.2.3. PCR ehk polümeraasiahelreaktsioon .. 23
 2.2.4. DNA geelektroforees .. 24
 2.2.5. Kloneerimine .. 24
 2.2.6. Sekveneerimine .. 24
 2.2.7. Transformatstioon. Elektroporatsioon. .. 25
 2.2.8. β-glükuronidaasi aktiivuse mõõtmine .. 26
 2.2.9. Liikuvuse (voogamise) testimine .. 26
 2.2.10. Fenoolsete ühendite eraldamine summaarest ekstraktist 27
 2.3. Tulemused ja arutelu ... 28
 2.3.1. Kartulist ekstraheeritud fenoolsete ühendite mõju Pw SCC3193 liikuvusele 28
 2.3.2. Metanooliekstrakti mõju Pw SCC3193 geenide fliC ja flhDC transkriptsioonile .. 31
 2.3.3. Metanooliekstrakti fraktsioonide mõju Pw SCC3193-le 33
2.3.4. Klорогеенапп пре салицилапп мõju Pw SCC3193 kasvule35
2.3.5. Klорогеенапп пре салицилапп мõju Pw SCC3913 vibуригеениде
transkriptsioonile ..37
2.3.6. Järeldused ..41

KOKKUVÔTE ...42
TÄNUVALIDUSED ..43
SUMMARY ..44
KASUTATUD KIRJANDUS ...45
LIHTLITSENTS ..53
KASUTATUD LÜHENDID

AHL – N-atsüül-homoseriinlaktoon (ingl.k N-acyl-homoserine lactone)

Amp – ampitsiliin

Cel – tselululaas

CGA – klorogeenhape (ingl.k chlorogenic acid)

Cm – klooramfenikool

Csr – süsiniku säilitamise regulaator (ingl.k carbon storage regulator)

DAMP – kahjustusega seotud molekulaarne muster (ingl.k damage-associated molecular pattern)

ExpA/S (GacA/S) – globaalne regulaator

FerE – feredoksiiini sarnane valk

FlhDC – viburi geenide ekspressiooni kontrolliv regulaatorvalk

fliA – viburigeenide sigmafaktor

fliC – viburifilamenti moodustava valgu geen

FliL – viburi mootori valk

HBB - viburi konks ja basaalkeha (ingl.k hook-basal-body)

HR – hüpertundlik kaitsevast (ingl.k hypersensitive response)

HSL – homoseriin laktoon (ingl.k homoserine lactone)

KDG – 2-keto-3-deoksüglükonaat

KdgR – pektiini lagundamise ensüüme kontrolliv regulaatorvalk

LB – Lurian-Bertani sööde

LPS – lipopolüahhariidid

LuxI/R – hulgatunnetuse signaalmolekulide süsteem

MUG – 4-metüülumbelliferüül-β-D-glükuroniiid

Nip – nekroosi esilekutsuv valk (ingl.k necrosis inducing protein)

OD – optiline tihedus (ingl. k optical density)

Pa – Pectobacterium atrosepticum
PAMP – patogeeniga seotud molekulaarsed mustrid (ingl.k *pathogen-associated molecular patterns*)

PCWDE – taime rakuseina lagundavad ensüümid (ingl.k. *plant cell wall degrading enzymes*)

Peh – endopolügalakturonaaas

Pel – pektaatlüaas

PGA – polügalakturoonhape

Pme – pektiinmetüülesteraaas

Pnl – pektiinlüaas

Prt – proteaaas

PTI – mustri vallandatud immuunsus (ingl.k *pattern-triggered immunity*).

Pw – Pectobacterium wasabiae

QS – hulgatunnetus (ingl.k *quorum sensing*)

Rcs – fosforüleerimise süsteem

RFU – suhteline fluorestsentsi ühik (ingl. k. *relative fluorescence unit*)

Rsm – sekundaarsete metaboliitide regulaator (ingl. k *regulator of secondary metabolites*)

SA – salitsüülhape (ingl.k *salicylic acid*)

SD – Shine-Dalgarno

SOB – Super Optimal Broth

T6SS – tüüp VI sektretsoonisüsteem (ingl.k *type 6 secretion system*)
SISSEJUHIATUS

Kartulil on oluline koht inimese toidulaulul. Kartulit kahjustavate patogeenide hulgast omavad olulist rolli märgmädanikku põhjustavad fütopatogeensed bakterid. Märgmädanikku tekitavatel bakteritel on lai peremeeste ring. Lisaks kartulile on need patogeenid võimalised nakatama näiteks maisi, tomatit, kaalikat, porgandit ja mangot. Sellesse patogeenide rühma kuulub Pectobacterium wasabiae (Pw), mis on laialega levinud ka meie kliimavöötmes. Igal aastal tekitab see taimepatogeen suurt majanduslikku kahju, muutes tonnide viisi juur- ja puuvilju müügi söögikõlbmatuks.

Märgmädanikku põhjustavate fütopatogeensete bakterite oluliseks virulentsusfaktoriteks on taimerakuseina lagundavad ensüümid, mis põhjustavad taimekoe matseratsiooni, mis viib nakatunud taime hukkumiseni. Nende ensüümide hulka kuuluvad pektinaasid ja tsellulaasid, mis lagundavad taimerakused nakatunud taimen olevat pektiini ja tselluluooji. Lisaks kuuluvad sellesse ensüümide kompleksi ka proteasid, mille funktsiooniks on taimsete valkude lagundamine, et suruda maha taimse kaitsemehhanismid.

Käesoleva töö kirjanduse osas antakse ülevaade nii Pw olulistest virulentsusfaktoritest kui ka regulatsiooni mehhanismidest, mis tagavad nende koordineeritud ekspressiooni. Põhiliselt keskendutakse liikuvuse rollile Pw virulentsuses. Töö eksperimentaalses osas kirjeldan, millised taimest tulevad signaalid mõjutavad patogeeni voogamist.
1. KIRJANDUSE ÜLEVAADE

1.1. Märgmädaniku põhjustavad bakterid

Märgmädanik on taimehaigus, mida põhjustavad fütopatogeensed bakterid. Peremeestaime tungimiseks kasutavad taimepatogeensed bakterid nematoodide, putukate abi või mehaanilisel käsitlemisel tekitatud vigastusi (Pérombelon et al., 1995) ning putukvęktooreid (Nykyri et al., 2014), lisaks võivad patogeendid tungida peremeestaime ka õhulõhede kaudu (Pérombelon et al., 1995). Pärast taime nakatamist induitseeritakse patogeenis taime rakuseina lagundavate ekstratsellulaarsete ensüümide (PCWDE, ingl.k. plant cell wall degrading enzymes) süntees, et lagundada taime rakuseina komponente, mille tulemusena vabanevad toitained, mida paljunev patogeeni populatsioon kasutab oma elutegevuseks (Toth et al., 2003). Märgmädanik võib põhjustada märkimisväärseid saagikuse kaudusid kasvuhooajal ja samamoodi ka hoiustamise ajal. (Davidsson et al., 2013). Märgmädanikku tekitavate bakterite olulisemaks virulentusfaktoriteks on rakuseina lagundavad ensüümid, lisaks soodustavad patogeendi levikut nakatunud taimekoes ka viburid, mis võimaldavad patogeendid liikuda primaarsetest nakatumiskohast üle kogu taime. Paljud fütopatogeensed bakterid produtseerivad ka siderofoore, mis võimaldavad bakteritel omastada keskkonnast elutegevuseks vajalikku rauda (Pérombelon 2002).

Põhileisteks märgmädaniku tekijateks on Dickeya ning Pectobacterium (varasem nimetus Erwinia) perekondadesse kuuluvad fütopatogeensed bakterid, kellest suurimat majanduslikku kahju tekitavad P. atrosepticum, P. betavasculorum, P. wasabiae ning P. carotovorum subsp. carotovorum, brasiliense, odoriferum (Nykyri et al., 2012).

1917. aastal kirjeldati esimest korda perekonda Erwinia kui kõiki Enterobacteriaceae sugukonda kuuluvaid taimehaigusi põhjustavaid patogeene, kuid pärast 16S rDNA järjestuste analüüsi otsustati perekond ümber nimetada (Hauben et al., 1998; Toth et al., 2003). Pektobaktereid leidub nii mullas, põhjavees kui ka taimede pinnal (Pérombelon et al., 1995). Neile on iseloomulik lai peremeestaimede ring, kuhu kuuluvad näiteks kartul, porgand, pirl, õun, mais, tomat, kapsas, puuvill, mango jne. (Alfano et al., 1996; Barnard et al., 2007; Ma et al., 2007). Tänu võimele toota teistest taimekoesse sattunud mikroorganismidest oluliselt suuremat kogustes kogustes taime rakuseina lagundavaid ensüüme, suudavad pektobakterid kiiresti tungida sügavale taimekoesse, seal paljuneda ning põhjustada haigusi. Selle perekonna patogeendid on võimalised nakatama nii elustaimi kui kasvama mullas oleval surmud taimekoes. Seega võivad patogeendid säilida mullas ka peale saagi koristamist (Pérombelon, 2002).
1.2. *Pectobacterium wasabiae*

Nagu eespool mainitud, põhjustab *Pw* nagu teisedki pektobakterid nakatunud taimedel (mugulate) märgmädanikku ja varrepõletikku (ingl. k *blackleg*). Haiguse tekst ja patogeeni levikut nakatunud taimes soodustavad kõrge õhuniiskus, toitainete kättesaadavus ning madal hapnikusisaldus. Anaeroobne keskkond pärsib peremeestaime hapnikust sõltuva kaitsemehhanismi tööd ning taime rakuseina lignifikatsiooni. Lisaks suureneb nendes tingimustes rakumembraani permeaablus, mille tagajärjel hakkab raku sisu lekkima, ja taime apoplasti vabanevad taimerakus olevad komponentid, mida patogeen saab kasutada kui elutegevuseks vajalike toitaineid. Tänu sellele suudab bakter tungida sügavamale taimekoesse, seal paljuneda ning lõpuks käivitada rakuseina lagundavate ensüümide süntees juba kõrgemal, nn induitseeritud tasemel (Pérombelon, 2002). Tulemuseks on limane, must ja märg mäダンe kahjustus, mis levib üle kogu taimel nakatunud kartulitaimel (Czajkowski et al., 2011).

Pw optimaalseks kasvutemperatuuriks on 28 °C. Hiljuti isoleeriti loodusest ka *Pw* tüved, mis sarnaselt *P.carotovorum*’ile suudavad kasvada ka 37 °C juures (Nykyri et al., 2012). Lisaks on *Pw* mõned omadused tõenäoliselt omandatud horisontaalse geninülekande kaudu. Nii on *Pw* tüvede genoomist leitud eukarüootset päritolu ferredoksiini sarnast FerE valku ning metüültransfieraasi kodeerivaid geene (Nykyri et al., 2012). *Pw* genoomis leiduvad spetsifilised saared, kus asuvad geenid tüüp VI sekretsoonimeehhanismi (T6SS) kodeerimiseks (Davidsson et al., 2013). Kuna *Pw* geneetilised eriärasused (eukarüootseted geenid) ning võime kasvada 37 °C juures on avastatud alles hiljuti, on tõenäoline, et *Pw* isolaate on eeltoodud põhjustel varasemalt
määratud hoopis P.carotovorum’iks. Seetõttu on keeruline öelda, kas Pw on uus esilekerkiv patogeen või on selle bakteri sagedasem leidmine kartulis seotud DNA järjestusepõhiste meetodite täiustumisega. See lubab spekuleerida, et Pw on ka varem osalenuid märgmädaniku ja on tema roll selles on suurem kui seni arvatud. (Nykyri et al., 2012; Waleron et al., 2013)

Üks olulisim Pw tüvi on 1988. aastal Soomes kartulist isoleeritud tüvi SCC3193 (Pirhonen et al., 1988), mida on kasutatud mudeltüvena, et selgitada erinevate taimerakuseina lagundavate ensüümide rolli infektsooni protsessis (Koskinen et al., 2012). Lisaks on selles tüves ka põhjalikult uuritud regulatoorset võrgustikku, mis tagab virulentsusfaktorite koordineeritud ekspressiooni nakatunud taimes (Nykyri et al., 2012; Kõiv et al., 2013).

1.3. Pectobacterium wasabie virulentsusfaktorid

Pärast patogeeni tungimist taime apoplasti (intratsellulaarsesse ruumi), võib ta hakata aktiivselt paljunema, kasutades seal olevaid toitaineid, või püsida seal uinuvas olekus märkamatult kuid (Pérombelon, 2002). See aeg on piisavalt pikk, et patogeen saaks üle elada perioodi kahe taimekasvuhooaja vahel (Pérombelon, 1992). Toitainete lõppemise korral apoplastis tuleb aga ellujäämseks ja paljunemiseks hakata lagundama taimekud PCWDE abil (Pérombelon, 2002; Davidsson et al., 2013). Latentsest nakkusest üleminek aktiivsese infektsooni toimub bakterile sobivatel keskkonnatingimustel: temperatuur peab olema patogeeni kasvuks optimaalne, hapniku kontsentratsioon madal (hüpoksiia) ning vesi peab olema kättessadaav (Pérombelon et al., 1995; Toth et al., 2003). Kui on saavutatud piisavalt suur bakterirakkude tihedus, käivitatakse virulentsusfaktorite protsensioon (Pirhonen et al., 1993; Davidsson et al., 2013). Pektobakterite populatsioonis reguleerib virulentsusfaktorite protsensiooni hulgatunnetus (QS, ingl.k quorum sensing) (Liu et al., 2008). Lisaks PCWDE sünteesile, kontrollib QS bakterites veel ekstratsellulaarse polüsahhariidide protsensiooni, antibiootikumide, siderofooride,
pigmentide ning Hrp valgu sünteesi, Ti plasmiidi ülekannet, biofilm moodustamist ja ka liikuvust (viburite sünteesi) (Bodman et al., 2003).

QS-i käivitatud PCWDE tootmine vabastab taimerakuseina fragmente, mis võivad aktiveerida peremeesorganismi kaitsevastuseid. Selleks, et bakter võiks riskida peremehe poolse tuvastamisega, peab olema virulentsusfaktorite tootmiseks tema populatsioonitiheidus piisavalt suur, et vajaduse korral alla suruda peremehe kaitsevastused (Liu et al., 2008). PCDWE tootmine võib olla ka vastuseks toitainete kriitilisele vähenemisele kasvukeskkonnas, mis on tingitud bakteripopulatsiooni kasvust. Sel juhul vallandub PCWDE geenide transkriptsioon bakteripopulatsiooni suurenedes ning taimekoe lagundamisel vabaneb keskkonda kasvuk ja elutegevuseks vajalikke toitainet. (Pöllumaa et al., 2012)

1.3.1. PCWDE

Taime rakuseina üheks olulisemaks komponendiks on pektiin, mis on galakturoonhappe jääkidest koosnev polümeer. Sõltuvalt taimest on teatud osa galakturoonhappe jääkidest metüleeritud, mis muudab ta vastupidavaks pektiini lagundavate ensüümide toimele. Lisaks pektiinile kuulub taime rakuseina koostisesse ka tselluloos. Tselluloos on polümeer, milles glükoosi molekulid on omavahel seotud 1,4-glükosiidsidemetega. (Collmer et al., 1986) Mazlink pakub taimekoe matseratsiooni tagajärjel, mida põhjustavad patageeni poolt massiliselt produtseeritavad taime rakuseina lagundavad ensüümid. Pw-l kuuluvad PCWDE hulka pektinaasid, tsellulaasi (Cel) ja proteaasid (Prt). (Toth et al., 2003) Nagu juba eespool mainitud, on need ensüümid vajalikud nii taime vastupanuvõime nõrgestamiseks kui ka taimerakust vajalike toitaineid kättesaamiseks.

Pektiini lagundamises osaleb ensüümide kompleks (nn. pektinolüütilised ensüümid), mis lagundavad pektiini polümeeris väiksemateks fragmentideks. Vastavad ensüümid toimivad kas pektiinile, mis on polügalakturoonhappe (PGA) metüleeritud ahel, milles sõltuvalt taimest võib 80% jääkidest olla metüleeritud, ning pektaadile, mis on polügalakturoonhappe mittemetüleeritud ahel (Barras et al., 1994; Agrios, 1997).

Pektinolüütiliste ensüümide hulka kuuluvad pektinmetüüleesteraas (Pme), pektaatlüaas (Pel), pektiinlääas (Pnl) ja polügalakturonaaas (Peh) (Collmer et al., 1986). Ensüümkompleksi toimel lagundatakse pektiin oligogalakturoniidideks, mida bakterid on võimelised transportima rakku ja kasutama nii süsiniku- kui ka energiaallikana (Nasser et al., 1994). Kuid samas võivad teatud ahelapiikkusega oligogalakturoniidid indutseerida ka taimedes kaitsevalkude sünteesi (Davidsson et al., 2013). Pw tüvi SCC3193 sünteesib nelja
erinevat pektatüüsi: PelA, PelB, PelC ja PelD (Heikinheimo et al., 1995) ning ühte polügalakturonaasi PehA (Flego et al., 2000). Taime edukaks ründamiseks vajab patogeen kogu pektinolüütiliste ensüümide kompleksi, samas on aga näidatud, et ühe või mõne üksiku ensüümi puudumine ei mõjuta oluliselt tüve SCC3193 virulentsust (Heikinheimo et al., 1995).

Olgugi, et tsellulaase ei peeta esmatähtsateks virulentsuse seisukohalt, on nad siiski vajalikud peremeestaime edukaks nakatamiseks (Toth et al., 2003). Tüves SCC3139 genoomis on leitud kaks tsellulaasi geeni, CelV1 ja CelS, millest ainult CelV1 ekspresseerub, kui patogeen on tunginud taimekoesse (Saarilahti et al., 1990; Mäe et al., 1995).

1.3.2. Nip valg

1.3.3. Füsioloogilised protsessid taimes

Selleks, et bakter suudaks taime nakatada ja selles ka hiljem edukalt ellu jääda ning paljuneda, tuleb maha suruda taime immuunvastus. Kuigi taimedel puudub somaailine kaasasündinud immuunvastus, on nad siiski võimalised end kaitsma. Taimed tunnevad sissetungija ära patoogeneega seotud molekulaarsete mustrite järgi (PAMP, ingl.k *pathogen-associated molecular patterns*), mis kujutavad konserveerunud struktuure nagu näiteks bakteriaalne flagellii, ning selle tagajärjel tekib taimes mustri vallandatud immuunsus (PTI, ingl.k *pattern-triggered immunity*). Taimed tunnetavad ohtu ka tänä kahjustustega seotud molekulaarsete mustrite (DAMP, ingl.k *damage-associated molecular patterns*) äratundmisele, mis indutseerivad peremehes PAMP indutseeritud kaitsevastustele sarnaseid mehhanisme. DAMP-ideks võivad olla taime rakuseina fragmendid, mis on vabanenud kas putuka närmise või nektrotroofi poolt sekreteritud PCWDE-de tagajärjel. (Davidsson et al., 2013)

Taimede kaitsemehhanismide hulka kuuluvad ka kaemalisid struktuurid, mis käituvad kaitsebarjäärima sissetungivate bakterite vastu. Paljudes taimedes esineb fenoolseid ühendeid ühendeid, millel on antimikroobne toime, kuid lisaks selle käitub osa neist ka signaal molekulidena, mis indutseerivad taimes kaitsevastuse. Osad neist fenoolsetest ühenditest uhendid on taimes pidaval olemas, teised moodustatakse taimes aktiivse kaitsemehhanismi osana, kui patoogene ründab taime. (Singhai et al., 2011) Taimedes leiduvad fenoolsetest ühenditest on osa, mis peamiselt kasulikud taimele endale, kuid mõningad neist uhendid tulevad ka kasuks taime nakatunud patoogeneidele. *Agrobacterium tumefaciens*’i puhul on teada, et mõned taimes leiduvad ühendid indutseerivad selle bakteri virulentsuseks vajalike geenide ekspresiooni (Bolton et al., 1986). Kartuli õheks iseajalukus ja põhiliseks fenoolseks ühendiks on klorogeenhape (CGA, ingl.k *chlorogenic acid*), mida leidub keskmiselt 16-18 μg grammi kartulikoore kohta ning millel on tugevalt antimikroobne toime (Singhai et al., 2011). Klorogeenhapet hakatakse tootma ka siis, kui kartulumugud tekib vigastustest põhjustatud stress. Klorogeenhapet kõrvalseeritakse ligniiniks ja suberiniks haavaparanemise käigus (Torres-Conteras et al., 2014). Veel üheks oluliseks fenoolseks ühendiks on salitsüülhape (SA, ingl.k *salicylic acid*), mis on taime fütohormoonina kaasasündinud immuunvastuse vahendajaks. Salitsüülhape reguleerib taimes nii normaalset füsioloogilisi protsessi kui ka kaitsevalkude produktsiooni (Lagonenko et al., 2013). On näidatud, et salitsüülhape mõjutab patogeeni elutegevust ja inhibeerib virulentsusfaktorite sünteesi. Salitsüülhape inhibeerib QS geenide ekspresiooni (Joshi et al., 2016) biofilmi moodustumist, liikuvust
ning langetab AHL taset (Lagonenko et al., 2013). Joonisel 1 on kujutatud salitsüülhappe inhibeerivat mõju liikuvusele (ujumine) selle kõrgel (50 mM) kontsentratsioonil.

Joonis 1. **Salitsüülhappe mõju *Pectobacterium carotovorum* liikuvusele.** Üleöö LB söötmes kasvatatud *Pectobacterium carotovorum* kultuurist inokuleeriti 10 µl rakususpensiooni pooltahkele 0,3% agarisisaldusega M9 minimaalsöötemele (süsinkuallikana 0,5% sahharoos), kuhu oli lisatud salitsüülhapet kontsentraatsioonis 50 mM ning inkubeeriti 28 °C juures 48 h. Kontrolliks oli *P. carotovorum*’iga inokuleeritud M9 sööde, kuhu ei lisatud salitsüülhapet (0 mM). 50 mM kontsentratsioonil inhibeerib salitsüülhape bakteri liikuvust (Lagonenko et al., 2013).

Samas on Joshi jt (Joshi et al., 2015) näidanud salitsüülhappe liikuvust (ujumine) soodustavat toimet (joonis 2) *Pectobacterium carotovorum*’ile madalatel kontsentratsioonidel (ei inhibeeri bakteri kasvu rohkem kui 50%). Seega oleneb salitsüülhappe toime bakterile kontsentratsioonist.
Joonis 2. **Salitsüülhappe mõju Pectobacterium’i liikide liikvusele.** Üleöö LB söötmes kasvatatud *Pectobacterium* liikide (*P. aroidearum* PC1; *P. carotovorum* PC11 ja WPP14; *P. brasiliensis* Pcb3 ja Pcb1692 ja *P. atrosepticum* EcaSCRI1043 ja *E. coli* K12. 200 μl kultuurile lisati salitsüülhapet, lõppkontsentratsiooniga 3 mM ning kasvatati 2 h. Salitsüülhappe juuresolekul kasvanud rakukultuur inokuleeriti pipetiotsaga pooltahkele 0,3% agarisisaldusega M9 minimaalsöötmele (süsiniikallikana 0,5% sahararoos). Kontrolliks olid M9 söötmele inokuleeritud rakukultuurid, millele ei lisatud salitsüülhapet. Inokuleeritud tasse inkubeeriti 28 °C juures 24 h. Pärast inkubeerimist mõõdeti liikvust liikumistsoonide laiuse järgi. Sellisel kontsentratsioonil (3 mM) indutseeris salitsüülhape bakteri liikvust (*Joshi* et al., 2015).

1.4. **Virulentsusfaktorite regulatsioon**

Pw virulentsusfaktorite regulatsioon toimub läbi keeruka regulaatorse kompleksi, mis peab tagama peremeestaime efektiivse nakatamise ja aitama patogeeni maha suruda taime kaitsevastuse. Lisaks mitmetele keskkonnateguritele, mõjutavad virulentsusfaktorite tootmist hulgatunnetus ja erinevad kahekomponendidised süsteemid ning transkripsiooni ja translatsiooni mõjutavad valgud (*Joonis 3*).
Joonis 3. Võimalikud sündmused, mis leiavad aset Pectobacterium wasabiae-s taime nakatamise ajal. (Kõiv et al., 2013, modifitseeritud) A. Skemaatiline esitus PW regulatoorset võrgustikut, kus on näidatud olulisemad regulaatorid, mis mõjutavad PW liikuvust. ↓ tähistab negatiivset regulatsiooni ning → positiivset regulatsiooni. B. Spekulaatiivne joonis regulatoorsetest sündmustest, mis käivitavad PW infektsiooni ja patogeeni rakkude voogava liikumise.

tõusuni (Kõiv et al., 2013). Seega reguleerib ExpI/ExpR1/ExpR2 PCWDE tootmist ja liikuvust kaudselt läbi Rsm süsteemi (Sjobölm et al., 2006; Chatterjee et al., 2010).

1.5. Pectobacterium wasabie ja liikuvus

Lisaks patogeenide nn primaarsetele virulentsusfaktoritele (toksiinid, lüütilised ensüümid jt), mis oteselt kahjustavad rünnatavaid peremesesorganismi rakke ja füsioloogilisi protsesse, on üheks oluliseks virulentsusfaktoriks ka patogeenide võime edukalt levida ning liikuda nakatunud organismis. Liikuvus aitab bakteritel paremini kätte saada toitaineid, vältida toksiine ja ebasoodsaid keskkondi, levida efektiivsemalt ning konkureerida teiste mikroorganismidega (Tans-Kersten et al., 2001; Hossain et al., 2005). Sageli pole liikumisvõimetud bakterid võimalised nakatama ega koloniseerima peremesesorganismi (Antúnez-Lamas et al., 2009). Liikumine on oluliseks virulentsuse determinandiks nii looma- kui ka taimepatogeenidel (Matsumoto et al., 2003).

1.5.1. Voogamine

Peamised viburist sõltuvad liikumisvõimud on ujumine ja voogamine. Ujumine on bakterite individuaalne liikumine helikaalsete viburite abil vedelas keskkonnas (Alberti et al., 1990; Partridge et al., 2013). Voogamine on aga bakterite kollektiivne liikumine pöörleva viburi
abil üle viskoosete substraatide ja pooltahkete pindade, mis võivad olla voogamist induitseerivaks keskkonnasignaaliks (Copeland et al., 2008; Patrick et al., 2012). Bakterites, kes reguleerivad geeniekspressiooni vastuseks pinnamuutustele, pole õnnestunud välja selgitada universaalset pinnatunnetuse mehhanismi. Kuigi sensoorsetes protsessides on vihjatud viburi mootori (FliL) ja raku ümbrise rollile, on ülekanderadade detailised mehhanismid veel teadmata (Partridge et al., 2013).

Voogamine erineb uumisest mitme omaduse poolest. Selle kollektiivse liikumise käävitamiseks on kõigepealt vajalik keskkonna tunnetamine ja rakkude omavaheline suhtlemine (ingl. k cell-cell interaction). Paljud voogavad bakterid toodavad pindaktiivseid aineid, mis aitavad neil vähendada hõõrdumist ning pindpinevust ja muuta liikumist kergemaks. Isoleeritud üksikud voogavad rakud on liikumatud, mis näitab, et voogamiseks peavad rakud dünaamiliselt koonduma ning tegema kollektiivset koostööd. Uumine seevastu on individuaalne liikumine. Kui inokuleerida vedelas söötmel kasvav nek rakke voogamist soodustavale pinnale, ilmneb neil rakkude voogamise viivitus (ingl. k swarm lag), mille käigus valmistavad ennast bakterid füsioloogiliselt ette voogamiseks (diferentseerumine) (Patrick et al., 2012).

Voogav liikumine sõltub oluliselt viburi, mille abil saab bakter tungetada teda ümbritsevat keskkonda ning tingimusi, mis soodustavad filamenti kokkupakkimist (Wang et al., 2005; Copeland et al., 2008). Viburi abil liikuvatel bakteritel on välja kujunenud keerukas süsteem viburivalkude sekretsooniks ning nende kokku panemiseks, mis toimub rakus proksimaalsetest struktuuridest distaalseteni. Kuigi pektobakterite viburite süsteesi mehhanismi pole täielikult iseloomustatud ega kirjeldatud, on ulatuslikke uurimistöid läbi viidud bakteritel Escherichia coli ning Salmonella. Nendest tulemustest võib juhinduda
flagellaarse reguloni strukturstete ning regulatoorsete omaduste ennustamisel ka pektobakterites (Chatterjee et al., 2010).

E. coli ning *Salmonella* alamliikide viburi moodustamisel ja funktsionaliseerimisel osaleb 14 operoni ja üle 50 geeni, mille hulka kuuluvad struktuursete subühikute, regulatoorsete valkude, mootorjöö generatoori ning kemosensoorsete valkude masinavärgi geenid. Nende geenide transkriptsioon on organiseeritud hierarhiliselt: klass I, klass II, klass III. (varajane, keskmine, hiline). Varajaste geenide hulka kuulub selle hierarhia tipus oleva flagellaarsete geenide ekspressiooni kontrolliv peamine regulatoorne operon *flhDC*, mis kodeerib varajaste valkude hulka kuuluvat tetrameerse DNA-d siduva proteiini FlhD₂C₂ subühikuid, mida kasutatakse keskmiste ja hiliste geenide transkriptsiooniks. (Karlinsey et al., 2000; Aldridge et al., 2002; Chatterjee et al., 2010). Keskmised geenid kodeerivad HBB (ingl.k hook basal body) sünteesiks vajalikke valke ning samuti sigma-faktori fliA ja antisigma-faktori flgM regulatoorseid geene. Hiliste geenide hulka kuuluvad geenid, mis kodeerivad viburi filamentivalike nagu näiteks FliC ja FlgM (Karlinsey et al., 2000; Chatterjee et al., 2010). FliC on liikumiseks oluline, sest fliC mutandid on liikumatud ning võimetud voogama (Bowden et al., 2013). Üheks voogamise signali taju mehanismi oluliseks komponendiks võib olla FliL – keskmise klassi flagellaarne operon, mis on võimeline seonduma staatoritega ning nii nende stabiilsust tõsta. FliL aitab staatorile seonduvate viburi vardal vastu pidada voogamisel tekkivale suuremale tõukejõule. Arvatakse, et FliL sensoorne roll võib olla seotud mootori kiirusjälgimisega või mõne teise pinnatajumise rajaga (Partridge et al., 2013).

1.5.2. Voogamise regulatsioon

Edukaks taime nakatamiseks on *Pw* puhul oluline liikuvus, mille tagavad peritrihhaalselt paiknevad viburid. Vähenenud virulentsust on kirjeldatud nii täielikliikumisvõimetutel kui ka osaliselt vähenenud liikumisvõimega *Pw* mutantidel, kusjuures PCWDE-de tootmine ei erine metsiktüvest (Pirhonen et al., 1991).

Viburite kui ka PCWDE tootmine on FlhDC operoni kontrolli all (Cui et al., 2008). Seega koordineeritakse *Pw* virulentsust mitte ainult taime rakuseina lagundavate ensüümide kompleksi sünteesiga, vaid ka viburite sünteesiga. FlhDC kontrollib 4 võtmeregulaatori – FliA, GacA, HexA ja RsmC ekspressiooni. HexA on Lrha homoloog, mis reguleerib negatiivselt FlhDC-d, AHL tootmist ning *rsmB* RNA-d. GacA reguleerib aga *rsmB*-d positiivselt. RsmC käitub kui anti-FlhDC faktor, mis seonub FlhDC-le ja moodustab viimasega inaktivse kompleksi (Chatterjee et al., 2009). FlhDC on negatiivselt reguleeritud ka RsmA poolt (Cui et al., 2008). Praeguseks on selgunud, et FlhDC mõju
virulentsusgeenide ekspressioonile on kaudne ja toimub läbi Rsm-süsteemi, milles ta aktiveerib rsmB geeni ekspressiooni (Chatterjee et al., 2010). Seega kontrollib FlhDC taimepatogeenides kahte protsessi – viburite ja virulentsusfaktorite sünteesi, mis mõlemad on patogeenile olulised peremeestaime nakatamisel (Chatterjee et al., 2009; Andresen et al., 2010; Chatterjee et al., 2010).

2. EKSPERIMENTAALNE OSA

2.1. Töö eesmärgid

Meie töögrupp uurib taimepatogeeni Pw virulentsusfaktoreid ja nende regulatsiooni. Kui taime rakuseina lagundavate ensüümide roll ja regulatsioon infektsiooni protsessis on siiani üsna põhjalikku käsitlemist leidnud, siis liikumise/voogava liikumise regulatsiooni tüves SCC3193 ei ole siiani uuritud. Sellest lähtuvalt on minu käesoleva bakalaurusetöö eesmärkideks:

1. Uurida, kuidas taimedest (kartulimugulastest) ekstraheeritud fenoolsed ühendid mõjutavad tüve SCC3193 voogamist

2. Analüüsida kartulist ekstraheeritud summaarse fenoolsete ühendite preparaadi komponentide mõju voogamisele

3. Uurida, kas taimes olev signaalmolekul salitsüülhape ja antimikroobne ühend klorogeenhape mõjutavad voogamist
2.2. Materjalid ja metoodika

2.2.1. Kasutatud bakteritüved ja plasmiidid

Tabel 1. Kasutatud bakteritüved ja plasmiidid

<table>
<thead>
<tr>
<th>Bakteritüved</th>
<th>Iseloomustus</th>
<th>Allikas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pectobacterium wasabiae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SCC3193</td>
<td>Metsiktüvi</td>
<td>(Pirhonen et al., 1988)</td>
</tr>
<tr>
<td>SCC3193rsmC</td>
<td>rsmC::Cm<sup>R</sup></td>
<td>Meie labor (avaldamata)</td>
</tr>
</tbody>
</table>

Escherichia coli

| DH5α | *supE4*, Δ*lacU169*, (lacZΔM15), *hasdR17*, *recA1*, *endA1*, *gyrA 96*, *thi-1*, *relA1* | (Hanahan, 1983) |

Plasmiidid

<table>
<thead>
<tr>
<th>pMW119::gusA</th>
<th>Amp<sup>R</sup>, kloneerimisvektor, mis sisaldab HindIII restriktsooniaisaidis ilma promootorita gusA geeni</th>
<th>(Marits et al., 2002)</th>
</tr>
</thead>
<tbody>
<tr>
<td>pMW119flhDC::gusA</td>
<td>flhDC promootoriirikond kloneeritud vektorisse pMW119::gusA</td>
<td>(Andresen et al., 2010)</td>
</tr>
<tr>
<td>pMW119fliC::gusA</td>
<td>Praimeritega XbaI ja SmaI amplifitseeritud fliC geen on kloneeritud pMW119::gusA vektorisse</td>
<td>Käesolev töö</td>
</tr>
</tbody>
</table>

Tabel 2. Kasutatud praimerid.

<table>
<thead>
<tr>
<th>Praimeri nimi</th>
<th>Praimeri järjestus (5’ → 3’)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M13 Fw</td>
<td>GTAAAAACGACGGCCAGT</td>
</tr>
<tr>
<td>GusMun</td>
<td>ACTGATCGTTAAAAACTGCCTGG</td>
</tr>
</tbody>
</table>
2.2.2. Söötmed ja kasvatamine

Pectobacterium wasabiae tüvesid kasvatati temperatuuril 30 °C kas LB vedelsöötmes või M9 minimaalsöötmes, mis sisaldas süsinikuallikana 0,5% saharooosi. *E.coli* rakke kasvatati temperatuuril 30 °C. Tärdsöötmete valmistamisel lisati LB söötmele agarit (15 g/l) (Sambrook *et al.*, 2001). Vajadusel lisati söötmeele 10% kartuliekstrakti (sort “Reet”), mis saadi purustatud kartulimugulate massi tsentrifuugimisel 15000g juures. Fenoolsete ühendite ekstraheerimiseks kasutati sama kartulisordi mugulaid. Toored kartulimugulad purustati ja saadud homogenes massi kuivatatud toatemperatuuril 24 h. Fenoolsete ühendite eraldamiseks ekstraheeriti kuivatatud kartulimassi 80% metanooliga (5 ml metanooli 1 g kartulimassi kohta) 24 h + 4 °C juures. Seejärel metanooliekstrakti koncentreeriti 10 korda vaakumkontsentraatoris (Eppendorf Vacufuge Concentrator, Eppendorf, Saksamaa). Konzentreeritud fenoolsete ühendite ekstrakti (edaspidi nimetatud kui metanooliekstrakt) lisati söötmetele vastavalt vajadustele. Vajadusel lisati söötmetele ka antibiootikum: ampitsilliin (Amp, 140 μg/ml), klooramfenikool (Cm, 20 μg/ml). Vedelsöötmes kasvatamisel aereeriti bakterikultuure loksutil.

2.2.3. PCR ehk polümeraasiahelreaktsioon

PCR-i matriitsina kasutati rakulüsaati. Rakkude lüüsimiseks lisati 25 μl-le steriilsele veele tikuotsaga rakke ning kuumutati 96 °C juures 10 minutit PCR-i masinas. Seejärel lüsaat tsentrifuugiti 10000 g juures (Eppendorf Centrifuge 5415R) ning PCR-i reaktsiooni matriitsina kasutati DNA-d sisaldavat supernatanti.

PCR-i reaktsioonisegu üldmahuga 20 μl sisaldas: 1x PCR puhvrit (10x PCR puhvri koostis: (75 mM Tris-HCl (pH 8,8), 20 mM (NH₄)₂SO₄, 0,01% Tween 20), 2,5 mM MgCl₂, 0,2 mM dNTP mix-i (dATP, dGTP, dCTP, dTTP), 0,05 U/μl Taq DNA polümeraasi (Prof. J. Sedman), 0,4 pmol praimereid Fw ja GusMun (Tabel 2), 0,5 μl rakulüsaati ja reaktsioonisegu viidi lõppmuhuni destilleeritud veega.

PCR-i etapid:
1. DNA esialgne denaturatsioon, polümeraasi aktiveerimine: 95 °C 3 minutit
2. DNA denaturatsioon: 95 °C 30 sekundit
3. Prämierite seondumine DNA-le: 53 °C-55 °C 30 sekundit
4. DNA süntees: 72 °C 40 sekundit

Etappe 2-4 korra 25 korda.

2.2.4. DNA geelelektroforees

DNA fragmentide olemasolu ja pikkuste kontrollimiseks kasutati geelelektroforeeis. PCR reaktsiooniseegule lisati 1/10 üldmahust markervärvi, mis sisaldas 0,04% broomfenoolsinist 50%-lises glütseroolis. PCR-i proovi ja markervärvi segu kanti 1%-lisele agaroosgeelile (1% agarosoi 1x TAE puhvis: 50 mM Tris-atsetaat, 1 mM EDTA, pH 8,2), mis sisaldas etiidiumbromiidi (0,25 μg/ml). Elektrofoorees viidi läbi 100 vooli juures 1x TAE puhvis ning DNA fragmendid visualiseeriti UV valguses (312 või 254 nm).

2.2.5. Kloneerimine

pMW119\(fliC::gusA\) konstrukti valmistamiseks amplifitseeriti \(fliC\) geen \(Pw\) tšve SCC3193 kromosoomilt praimeritega XbaI ja SmaAI. DNA fragmendi amplifitseerimiseks kasutati \(Pfu\) DNA polümeraasi, mis omab 3’-5’ eksonukleaaasset aktiivsust ja tömbistab kahehelalise DNA üleülatuvad otsad. PCR tingimused olid samad, mis \(Taq\) polümeraasi kasutamisel, ainult DNA sünteesi aeg oli \(Pfu\) polümeraasi kasutamisel 2 min. PCR fragmendi kloneerimisel lõigati plasmiidi pMW119::gusA restrikaasidega ASma\(fliC\) ja Xba\(fliCZ\) ja fragmenti restrikaasiga Xba\(fliCZ\). Vektor ja fragment puhastati DNA Clean & Concentrator ™-5 Kit’ga (Zymo Research, USA) ning ligeeriti kokku T4 DNA ligaasiga vastaval tootja protokollile (Termo Fischer Scientific, Leedu). Vektorisse pMW119::gusA kloneeritud \(fliC\) geen on järjestused kindlaks tegemiseks sekveneeriti PCR-i fragment, mis saadi kasutades praimereid GusMun ja M13Fw.

2.2.6. Sekveneerimine

Kahehelalise DNA järjestuse määramiseks kasutati Sangeri ensümaatilist meetodit, kus uute ahelate sünteese peatataks didesoksüribonukleotiidiidega (Sanger et al., 1977).

Eraldamaks PCR-i reaktsiooniseegust kasutamata jäänud praimerid ja dNTP-d, lisati 5 μl-le proovile 1 μl aluselist fosfataasi FastAP (1 U/μl) ja 0,2 μl eksonukleaaas I (20 U/μl). Proove töödeldi PCR masinas tingimustel: inkubeerimine 15 minutit 37 °C, ensüümide inaktiveerimine 15 minutit 80 °C.

Sekveneerimisproovide reaktsiooniseegud üldmahus 10 μl, sisaldasid: 1 μl töödeldud PCR-i produkti, 2 μl 5x lahjendamispuhvirt, 0,7 μl premix, 0,4 μl praimerit GusMun või M13Fw, üldmahuni destilleeritud vett. Proove töödeldi PCR-i masinas tingimustel:
1. DNA denaturatsioon 95 °C 15 sek
2. Praimeri seondumine 55 °C 15 sek
3. DNA süntees 60 °C 1 min
Tsükleid korrati 30 korda.

Saadud proovid sadestati, lisades neile 2 μl dekstraani (10 mg/ml) ning 30 μl 96% külma filtreeritud etanooli (2,5 mahtu) ning hoiti 15 minutit -20 °C juures. Seejärel proove tsentrifugiti 10 minutit 13000 g juures, eemaldati etanool ning sadet pesti 2 korda 200 μl 70% piiritusega. Sademelt eemaldati täielikult etanool, lasti öhu käes kuivada ja lahustati 10 μl-s 70%-lises formiaadis ning säilitati -20 °C juures.

2.2.7. Transformatsioon. Elektroporatsioon.

E. coli DH5α rakke kasvatati SOB vedelsöötmes temperatuuril 18 °C, tiheduseni OD₆₀₀~0.6 ning seejärel töödeldi rakke TB puhvri (10 mM Hapes, 15 mM CaCl₂, 250 mM KCl, 55 mM MnCl₂: pH 6.7) ja dimetüülsulfoksiidiga (lõppkonts. 7%) ning säilitati temperatuuril -80 °C.

Plasmiid pMW119/flfC::gusA viidi transformatsiooniga DH5α tüvesse, kasutades Inoue jt meetodit (Inoue et al., 1990). Kompetensetele *E. coli* DH5α rakkudele lisati 10 μl ligeerimissegu. DNA ja bakterirakkude segu hoiti 20 minutit jääd, seejärel tehti kuumašokk 42 °C juures 1 min ja 20 sekundit ning asetati koheselt viieks minutiks tagasi jääde. Lisati 1ml LB söödet ning kasvatati 37 °C juures 45-60 minutit. Rakud plaaditi LB tardsöömele, kuhu oli lisatud selektsooniiks vajalik Amp, 40 μl IPTG-d (100 mM) ja 40 μl X-Gal-i (40 ng/μl) kolooniate kontrollimiseks sini-valge testiga.

Elektroporatsionikompetentsete rakkude saamiseks kasvatati *Pw* erinevate tüvede rakke 5 ml-s LB söömes (üleöö statsionaarsesse kasvusaasi), kuhu vajadusel oli lisatud sobiv antibiootikum. Hommikul tehti üleöö kultuurist lahjendus (1:100) 50 ml-sse LB söömesse ning rakke kasvatati tiheduseni OD₅₈₀~0,6. Seejärel rakud jahutati jääd ning tsentrifugiti (1500 g, 15 min) 4 °C juures. Rakke pesti kaks korda 50 ml 10% glütserooliga ning üks kord 25 ml 10% glütserooliga. Rakud võeti üles 40 μl-s 10% glütseroolis.
Elektrokompetentidele lisati ~10 ng plasmiidset DNA-d ning rakkude-DNA segu viidi eelnevalt jään jahutatud elektroporatsiooniküvetti. DNA elektroporeeriti rakkudesse BIO-RAD Pulser-iga (USA) pingel 2,5 kV. Pärast seda lisati rakkudele jään jahutatud 1 ml LB söödet ning hoiti enne kasvatamist segu 15 minutit jään ning seejärel kasvatati ~30 minutit 30 °C juures loksutil. Järgnevalt tsentrifuugiti rakud söötimest välja ning plaaditi ampitsilliini sisaldavale tardsöötmere.

2.2.8. β-glükuronidaasi aktiivuse mõõtmine

β-glükuronidaasi (GusA) aktiivsuse määramiseks vedelkultuurist kasvatatud tüvesid statsionaarse kasvufaasini ~10 tundi LB söömes ampitsilliini juuresolekul. Seejärel tehti 1:100 lahendus M9 minimaalsöötmesse, mis sisaldas 0,5% sahharoosi ning kultuure kasvatati üleöö. Hommikul tehti üleöökultuuridest lahjendused OD$_{580}=0,05$ M9 minimaalsöötmesse, kuju oli lisatud süsinikuallikana 0,5% sahharoosi. 150 μl lahjendatud kultuure pipeteeriti steriilsesse 96 kaeviga mikrotiiterplaadile ning kasvatati aereerides loksutil (Heidolph Titramax 1000) 30 °C juures. GusA aktiivsust määrati ajapunktides 2, 4, 6 ja 8 tund.

β-glükuronidaasset aktiivsust mõõdeti mustal läbipaistmatul 96 kaevuga mikrotiiterplaadil (Greiner bio-one), kus 5 μl rakke permeabiliseeriti 90 μl-s CTAB puhvris (0,05% heksadetsüültrimetüülammooniumbromiid, 0,27% β-merkaptoetanool ja 1 mM EDTA 50 mM naatriumfosfaatpuhvrist pH=7) ning loksutati 10 minutit. Seejärel lisati 5 μl MUG (4-metüülumbelliferüül-β-D-glükuroniiid, 0,6 mg/ml) lahust, mis on substraadiks gusA geeni produktile β-D-glükuronidaasile. Substraadi lagunemisel tekib fluorestseeruv produkt 4-metüülumbelliferoon (MU). Loksutati veelkord 10 minutit ning seejärel mõõdeti MU akumuleerumist ergastades 360 nm ja emiteerides fluoresentsi 465 nm juures spektrofotomeetril Infinite M200 PRO (Tecan). Arvutati relatiivse fluoresentsi ühiku tõusu miinitis rakutiheduse suhtes (RFU/min OD$_{580}$). Kõik proovid määrati vähemalt kolmes korduses.

2.2.9. Liikuvuse (voogamise) testimine

Liikuvuse testimiseks kasvatati tüvesid üleöö 5 ml-s LB söömes, kuju vajadusel oli lisatud sobiv antibiootikum: SCC3193 rsmC-le lisati 10 μl Cm (20 μg/ml). Hommikul viidi üleöö kasvanud kultuuride tihedused OD$_{580}$~1.0-ni. Seejärel pipeteeriti 2 μl bakterikultuuri M9 minimaaltassidele (süsinikuallikana 0,5% sahharoosi), mis sisaldasid 0,4% agarit. Voogamise indutseerimiseks lisati söötmele kas 10% kartulieksrakti, 3% või 4% metanoolieksstrakti, 1,25 mM Na-salitsülaati või 1,25 mM klorogeenhapet.
2.2.10. Fenoolsete ühendite eraldamine summaarest ekstraktist

Kartulist ekstraheeritud summaarne fenoolsete ühendite ekstrakt (40 ml) kontsentreeriti vaakum-evaporaatoriga, aurutades välja metanool. Saadi 100 mg tahket fraktsiooni. Saadud tahke fraktsioon lahustati 2 ml-s toluen:atsetoon (suhtes 1:1) segus ning voolutati Isolera One (Biotage) kiirkromotograafil läbi Biotage SNAP Vetra 10g (HP Sphere™, 25µm) silikaatkolonni 50 ml voolutiga toluen:atsetoon:vesi (suhtes 20:20:1). Voolutamise tulemusel saadi 4 erinevat fraktsiooni, mis võeti üles metanoolis ning voolutati õhukese kihkromotograafia meetodil DC-Fertigfolien ALUGRAM® Xtra SIL G/UV254 (Machery-Nagel GmbH & Co. KG) 0,20 mm silikaplaadil. Tulemused visualiseeriti fosformolübdeenhappega (95%-ses etanooli lahuses).
2.3. Tulemused ja arutelu

2.3.1. Kartulist ekstraheeritud fenoolsete ühendite mõju Pw SCC3193 liikuvusele

Kõiv jt poolt avaldatud andmetest oli teada, et Pw tüvi SCC3193 on võimeline tahkel söötmel edasi liikuma kahel viisil – nii ujudes (rakkude individuaalne liikumine viburite abil) kui ka voogamise abil (bakterite kollektiivne liikumine) (Kõiv et al., 2013). Läbiviidud katsed näitasid, et tüved SCC3193 wt ja rsmC on võimeline voogama tardsöötmel (agari sisaldus 0,4%) ainult siis, kui sinna on lisatud kartulieksraadikti (mugulast kõrvalt „mahl“). Nakatunud kartulimugulast ja taimseeksraadikti sisaldavalt söötmelt eraldatud bakteritele oli iseloomulik viburite suur arv võrreldes bakteritega, mis olid kasvanud minimaalsöötmel, kuhu polnud lisatud kartulieksraadikti. Kui siiani arvati, et patogeen liigub nakatunud taimekoes ujudes, siis saadud tulemused näitavad selgelt, et pigem toimub patogeeeni liikumine peremeestaimes kollektiivselt voogamise abil.

Nendest olemasolevatel tulemustel lähtuvalt püstitasin oma töö eesmärgiks välja selgitada, millised taimseeksraadikti komponendid indutseerivad tüvess SCC3193 rsmC intensiivse viburite sünteesi, mis omakorda käivitab patogeeeni rakkude voogava liikumise. SCC3193 rsmC mutant sai valitud seetõttu, et antud mutant ei tooda anti-FlhDC faktorit RsmC ning seega on selles tüves suurem vaba FlhDC hulk. FlhDC-I on viburigeenide ekspressioonile positiivne mõju (Aldridge et al., 2002), mistõttu saab SCC3193 rsmC muundis edukalt uurida kartulieksraadikti toimet viburite sünteesile ja liikuvusele. Kuna taimed (ka cartulimugulad) sisaldavad erinevaid fenoolseid ühendeid, siis otsustasin kontrollida, kas fenoolised ühendid võivad olla induktoriks(tekss), mis käivitab patogeeeni rakkude voogava liikumise. Selleks ekstraheerisin kartulieksraadiga purustatud massi 80% metanooliga ja lisasin saadud metanooliga ekstraheeritud fenoolsete ühendite ekstrakti (edaspidi „metanoolieksraadik“) 0,4% agari sisaldusega tardsöötmel. Saadud tulemused on esitatud joonisel 4 ning joonisel 5 oleval fotol.
Joonis 4. **Kartulist ekstraheeritud metanooliekstrakti mõju Pw SCC3193 wt ja SCC3193 rsmC mutandi voogamisele tahkel söötmel.** Metsiktüve Pw SCC3193 wt ja SCC3193 rsmC mutanti kasvatati 30 °C juures tahkel M9 minimaalsöötmel (süsinikuallikana 0,5% sahharoosi), mis sisaldas 0,4% agarit. Voogamise induitseerimiseks lisati kartulist eraldatud metanooliekstrakti 1,5%, 3%, 4% ja 5%.

Katsetest saadud tulemused näitavad, et testitud katsetingimustes soodustab metanooliekstrakt SCC3193 wt ja SCC3193 rsmC mutandi voogamist 0,4% agari sisaldusega tardsöötmel Nii SCC3193 wt kui SCC3193 rsmC mutant hakkab voogama, kui söötmele on lisatud minimaalselt 3% metanooliekstrakti. Metanooli lisamine 0,4% agari sisaldusega tardsöötmele bakterite voogamist ei induitseerinud (andmeid pole näidatud). Metanooliekstrakti kontsentratsiooni suurendamine 5%-ni soodustab nii SCC3193 rsmC mutandi kui ka wt voogamist. Saadud tulemused näitavad, et kartulimugulast saadud metanooliekstrakt induitseerib mõlema tüve voogamist maksimaalselt, kui selle kontsentratsioon söötmes on 4% (Joonis 4).
Joonis 5. **Kartulist ekstraheeritud metanooliekstraksi mõju Pw SCC3193 wt ja SCC3193 rsmC mutandi voogamisele tahkel söötmel.** Metsiktüve Pw SCC3193 wt ja SCC3193 rsmC mutanti kasvatati 30 °C juures tahkel M9 minimaalsöötmel (süsinikuallikana 0,5% sahharoosi), mis sisaldas 0,4% agarit. Voogamise indutseerimiseks lisati kartulist eraldatud kartuliekstrakti 10% ja metanooliekstrakti 4%. Kontrolltassidel M9 minimaalsöötmele ei ole lisatud ei kartuli- ega metanooliekstrakti. Tassid fotografeeriti 12 tundi pärast inokuleerimist. Valge joonega on tähistatud voogava laigu läbimõõt. Katset saadud tulemused näitavad, et nii kartulimahl kui ka metanooliekstrakt indutseerivad voogamist. Voogamist indutseerivaid ühendeid on võimalik kartulimugulast metanooliga ekstraheerida ning saadud metanooliekstrakt (4%) indutseerib voogamist madalamatel kontsentratsioonidel kui kartulimahl (10%). SCC3193 rsmC mutandis on voogamine suurem kui SCC3193 metsiktüves.

Joonisel 4 ja 5 kujutatud katset võib järeldada, et kartuliekstrakt ja metanooliekstrakt indutseerivad voogamist. Paljudel bakteritel, nagu näiteks *Proteus mirabilis*, on keskkonnast tulevaks signaaliks, mis indutseerib voogava liikumise, bakterite kokkupuude tahke pinnaga (Rather, 2005). Minu poolt läbiviidud katse puhul on näha, et ainult tahkest pinnast voogamise indutseerimiseks ei piisa, sest ilma metanooliekstrakti lisamata tahkel...

2.3.2. Metanooliekstrakti mõju Pw SCC3193 geenide fliC ja flhDC transkriptsioonile

Katsest saadud tulemused näitavad, et metanoolieks trakti indubeerib nii *fliC* ja *flhDC* transkriptsiooni mõlemas tüves. SCC3193 *rsmC* mutandis on *fliC* transkriptsioon vörrelduna SCC3193 metsikütugeva eelviimisel ajapunktitil (4 h) ligikaudu 3 korda suurem. Metanoolieks trakti lisamine suurendab mõlemas tüves *flhDC* transkriptsiooni – SCC3193 *wt* tüves keskmiselt 2 korda ning SCC3193 *rsmC* mutandis 1,5 korda eelviimases ajapunktis (4 h). SCC3193 *rsmC* mutandis on *flhDC* transkriptsiooni nii indubeeritud kui indubeerimata tingimustes poole suurem kui SCC3193 *wt*-s.

SCC3193 *rsmC* mutandi suurem *fliC* transkriptsiooni vörrelduna metsikütugeva tuleneb vabas FlhDC valgus suuremast hulgast SCC3193 *rsmC* tüves, kus ei toodeta RsmC valku. Seetõttu
ei toimu SCC3193 rsmC mutandis ulatuslikku valk-valk interaktsiooni RsmC ja FlhDC vahel ning vaba FlhDC hulk rakkudes on tavalisest suurem. Seetõttu on võimalik ka suurem viburigeenide ekspressioon. Lisaks indutseerib metanooliekstrakti lisamine sõötmess ka flhDC geenide transkriptsiooni, mis omakorda suurendab viburigeenide transkriptsiooni.

Kuna metanooliekstrakt ilmutab tugevat voogamist soodustav toimet SCC3193 rsmC mutandile ka voogamistassidel, võib olla tõenäoline, et metanooliekstrakt mõjutab viburigeenide ekspressiooni regulaatorit FlhDC, mistõttu on viburigeenide ekspressioon kõrgem ning voogamine suurem.

Kokkuvõttes näitavad minu tulemused, et kartulimugulatest saadud metanooliekstrakt indutseerib nii flhDC kui ka fliC mõlemas tüves, nii SCC3193 wt kui SCC3193 rsmC mutandis. Minu tulemused on kooskõlas Kõiv jt poolt esitatud andmetega, kes näitasid, et voogavate rakkude pinnal suureneb viburite arv ja ka suurus (Kõiv et al., 2013). Lisaks ei saa ka välistada võimalust, et metanooliekstrakti lisamine suurendab ekstratsellulaarsete polüsaahhariidide sünteesi, mis transporditakse rakkudest välja ja mis vähendavad hõõrdumist sõõtmepinna ja rakkude vahel. Nii näiteks indutseeritakse Proteus mirabilis pindaktiivsete ainete süntees just rakkude sattumisel tahkele pinnale (Gygi et al., 1995; Partridge et al., 2013).

2.3.3. Metanooliekstrakti fraktsioonide mõju Pw SCC3193-le

Joonis 7. **Metanooliekstrakti fraktsioonide õhukese kihi kromatogramm.**

Metanooliekstraktist fraktsioonide eraldamiseks kasutati kiirkromotograafia meetodit. Saadud fraktsioonid nummerdati: (2), (3), (4), (6-9). Vördluseks lisati klorgeenhape (*Klor.*), salitsüülhape (*Sal.*) ning lahutamata metanooliekstrakt (*Ekst.*).

Kasutasin neid metanooolis üles võetud fraktsioone, et mõõta nende mõju SCC3193 *wt* ja SCC3193 *rsmC* tüvede kasvule ja liikuvusele. Fraktsioonide mõju uurimiseks SCC3193 *wt* ja SCC3193 *rsmC* viburigeenide ekpressioonile elektroporeerisin *fliC::gusA* ning *flhDC::gusA* transkriptsioonikonstruktid tüvedesse SCC3193 *wt* ja SCC3193 *rsmC*.

Seejärel kasutasin analüüseid tüvede kasvu ja liikuvusele. Fraktsioonide efekti mõjutamine SCC3193 *wt* ja SCC3193 *rsmC* transkriptsioonikonstruktid tüvedesse SCC3193 *wt* ja SCC3193 *rsmC*

Seeläbirööpmise kaudu kasutasin metanooliekstrakti fraktsioonide lisamist SCC3193 *wt* ja SCC3193 *rsmC* tüvedesse M9 minimaalsöödtes (süsinikuallikana 0,5% sahharoosi). Lisandlit luuletati fraktsioonid 2, 3, 4 ja 6-9 ning mõõdeti β-glükuronidaasi aktiivsust. Vördluseks kasutasin M9 minimaalsöödtes (süsinikuallikana 0,5% sahharoosi), kuhu polnud lisatud ühtegi indupeereriv ainet.

Ükski analüüsitud fraktsioonidest ei mõjutanud kummagi tüve – SCC3193 *wt*, SCC3193 *rsmC* liikuvust (ükski lisatud fraktsioon ei inhibeerinud patogeeni kasvu söötmes). Kahjuks ei mõjutanud eraldatud fraktsioonide lisamine söötmekohal *flhDC::gusA* ega *fliC::gusA* aktiivsust (andmeid pole näidatud).

Minu poolt saadud negatiivsetel tulemustel võib olla mitu põhjust – eraldatud ja katses kasutatud fraktsioonid ei ole iseseisvalt piisavalt stabiilsed, ekstrakti lahutamise käigus on muutunud komponentide konformatsioon või antud fraktsioonid ei oma iseseisvalt piisavalt bioaktiivsust. Lisaks ei saa ka välistada võimalust, et bioloogilist aktiivsust omab ainult kindel fraktsioonide (keemiliste ühendite/fenoolsete ühendite) kombinatsioon.
2.3.4. Klorogeenhappe ja salitsüülhappe mõju \(Pw \) SCC3193 kasvule

Varasemalt on teada, et kartulimugulates kogunevad mitmesugused fenoolsed ühendid, millest osa omab kaitsefunktsooni, samas kui mõned käituvad kui signaalmolekulid, mis reguleerivad taimes mitmesuguseid füsioloogilisi protsesse. Samas on fenoolsete ühendite hulgas ka selliseid, mille süntees käivitatakse just patogeeni poolt kahjustatud taimerakkudes. Sellised ühendid käituvad kui signaalmolekulid, mis indutseerivad kaitsevalkude sünteesi nakatunud taimes (Singhai et al., 2011; Torres-Conteras et al., 2014; Joshi et al., 2015). Erinevate fenoolsete ühendite mõju patogeenide elutegevusele on testitud
\(Pectobacterium \) mitmetel alamliikidel (Joshi et al., 2015). Kuna fenoolsete ühendite mõju
\(fütopatogeensete bakterite liikuvusele (eriti voogamisele) on vähe uuritud, huvitas mind, kas sellised, ka kartulimugulates olevad fenoolsed ühendid nagu salitsüülhape (signaalmolekul) ja klorogeenhape (antimikroobne ühend), mõjutavad \(Pw \) voogamist. Selleks, et analüüsid nende ühendite mõju \(Pw \) liikuvusele, tuleb välja selgitada optimaalne kontsentratsioon, mis ei pärsi bakterite kasvu ja on lähedane taimedes (mugulates) olevale kontsentratsioonile. Joshi jt (Joshi et al., 2015) näitasid, et selliseks kasvu mitteinhibeerivaks (pärsib bakterite kasvu maksimaalselt 50%) kontsentratsiooniks
\(Pectobacterium carotovorum \) WPP14 tühes on salitsüülhappe puhul 3 mM ning klorogeenhappe puhul 5 mM.
Joonis 8. Salitsüülhappe ja klorogeenhappe mõju Pw SCC3193 wt ja rsmC mutandi kasvule. Pw SCC3193 wt ja SCC3913 rsmC mutanti kasvatati 30°C juures M9 minimaalsöötmel (süsinikuallikana 0,5% sahharoosi) vedelkultuuris, mis sisaldas klorogeenhapet ja salitsüülhapet (Na-salitsülaat). A – SCC3193 wt klorogeenhappe juuresolekul, B – SCC3193 rsmC klorogeenhappe juuresolekul, C – SCC3193 wt salitsüülhappe juuresolekul D – SCC3193 rsmC salitsüülhappe juuresolekul. Nende lõppkontsentratsioon söötmes oli: 5 mM (), 1,25 mM (), või 0 mM (). Bakterikultuuri optilist tihedust mõõdeti 0, 2, 4, 6 ja 8 tunni möödudes. Esitatud on 3 mõõtmise tulemused. Mõõtmisel esinenud vead oli alla 10%.

Minu tulemustest näeme, et nii SA kui ka CGA inhibeerivad 5 mM juures bakterite kasvu rohkem kui 50%, samas mõlema fenoolse ühendi lisamine sõõtmele lõppkontsentratsioonil 1,25 mM ei pärssinud kummagi tüve kasvu M9 minimaalsöötmes. Minu tulemustest näeme, et testitud kasvutingimustes oli tüvede SCC3193 wt ja SCC3193 rsmC kasvatamisel M9 minimaalsöötmes (0,5% süsinikuallikana sahharoosi) optimaalseks kontsentratsiooniks 1,25 mM (joonis 8).

Minu tulemused olid kooskõlas Joshi tulemustega (Joshi et al., 2015) – salitsüülhape pärssis kasvu, eriti kõrgematel kontsentratsioonidel. On teada, et SA toime bakteritele käib läbi hulgatunnetuse. SA inhibeerib autoinduktorite sünteesi ja seega mõjutab ka kõikide hulgatunnetusega reguleeritavate geenide ekspressiooni. Lisaks virulentsusgeenidele, mõjutab SA ka nende geenide ekspressiooni, mis kontrollivad mitmete füsioloogiliste protsesside toimumist bakterites välimpool peremeestaime (Joshi et al., 2016). SA toime
geenide ekspressioonile erinevates *Pectobacterium* alamliikides varieerub (Joshi *et al*., 2016) ning sellest tulenevalt võib SA mõju konkreetsete geenide ekspressioonile sõltuda bakteritüvest (Lagonenko *et al*., 2013). Klorogeenhappe kasvu inhibeeriv toime tuleneb ühendi antimikroobsest toimest (Torres-Conteras *et al*., 2014).

2.3.5. Klorogeenhappe ja salitsüülhappe mõju Pw SCC3913 viburigeenide transkriptsioonile

Minu katsete tulemused näitavad, et antud kontsentratsioonil klorogeennon inhibeerib ja salitsülhappe indukseerib fliC ja flhDC transkriptsiooni mõlemas tüves. Vaadeldes transkriptsiooni aktiivsus 4 tunni möödudes, siis on näha, et CGA inhibeerib fliC transkriptsiooni SCC3193 wt tüves 67% ja SCC3193 rsmC tüves 60% võrreldes kontrolliga. SA indukseerib fliC transkriptsiooni SCC3193 wt tüves 23% ja SCC3193 rsmC tüves 27% võrreldes kontrolliga. CGA inhibeerib ka 4 tunni möödudes flhDC ekspressiooni SCC3193 wt tüves 76% ja SCC3193 rsmC tüves 78% võrreldes kontrolliga. SA indukseerib flhDC ekspressiooni SCC3193 wt tüves 22% ja SCC3193 rsmC tüves 23% võrreldes kontrolliga.

Lõppkokkuvõttes näitavad minu tulemused, et kuigi taimedest (kartulimugulad) ekstraheeritud fenoolsed ühendid induitseerivad Pw viburigenide ekspressiooni, võivad individuaalsed fenoolsed ühendid taimes omada nii geenide ekspressiooni soodustavat kui
ka pärssivat toimet. Taimekstrakti mõju voogamisele tuleneb erinevate taimsete fenoolsete ühendite summaarest toimest.
2.3.6. Järeldused

Uuritud tüvel *Pw* SCC3193 erineb voogamine teistest bakteritest, mis kasutavad tahkel pinnal edasi liikumiseks sama kollektiivse liikumise vormi. Erinevalt *Proteus vulgaris* tüvedest, ei kasuta minu poolt uuritud *Pw* tüvi voogamiseks *laf*-vibureid. Lisaks näitasid minu katsete tulemused, et tahke pind ei industeri *Pw* voogavat liikumist. Erinevalt teistest virulentsusfaktoritest (PCWDE) ei indusheeri PGA lisamine M9 minimaalõõtmele patogeeni voogamist. Viburigeenide positiivse regulaatori FlhDC ülehulk SCC3193 *rsmC* mutandis ei ole piisav, et indubeerida voogavat liikumist. Need tulemused lubavad teha järelmuse, et vaatamata voogamise olulisele rollile infektsiooniprotsessis, on voogamine reguleeritud teistest virulentsusfaktoritest erinevalt.

Minu tehtud katsete tulemused kinnitavad, et taimne ekstrakt (kartulimahl) soodustab nii *Pectobacterium wasabiae* SCC3193 *wt* kui ka SCC3193 *rsmC* voogamist. Kartulist ekstraheeritud fenoolseid ühendid (metanooliekstrakt) indubeeravad voogamist tahkel sõõtmele juba madalatel kontsentratsioonidel (3%). Need tulemused näitavad selgelt, et voogamine käivitatakse patogeenis pärast tema tungimist rakku.

KOKKUVÕTE

Vaatamata sellele, et voogamine on üks virulentsusfaktoritest, ei indutseeri seda erinevalt teistest virulentsusfaktoritest (PCWDE) PGA lisamine kasvukeskkonda. Käesoleva töö eesmärgiks oli välja selgitada kartulis leiduvate fenoolsete ühendite ühendite mõju *Pectobacterium wasabiae* SCC3193 voogamisele. Selleks ekstraheerisin kartulist fenoolsed ühendid. Töö esimeses etapis kasutasin summaaret fenoolsete ühendite preparaati (metanooliekstrakt), mis oli saadud kartulimugulate ekstraheerimisel metanoliga. Saadud metanooliekstrakt indubeeris *Pw* SCC3193 *wt* ja SCC3193 *rsmC* mutandi voogavat liikumist tahkel söötmel.

Minu tulemustest võib järeldada, et erinevate virulentsusfaktorite sünteesi indubeerivad erinevad taimeraku komponendid. Seega indubeeritakse kogu virulentsusfaktorite kompleks tingimustes, mis on võimalikult lähedased keskkonnale nakatunud taimekoes.

Saadud tulemused on edasiseks aluseks *Pectobacterium wasabiae* voogamise mehhanismide uurimisele kartulis olevate fenoolsete ühendite toimel.
TÄNUVALDUSED

Suured tänud minu perele ja sõpradele igakülgse toetuse eest lõputöö kirjutamisel.
SUMMARY

Pectobacterium wasabie (*Pw*) is a phytopathogenic bacterium that causes soft rot disease. *Pw* has a wide host range, including potato, carrot, mango, maize and cabbage, and because of that it causes serious economical damage. *Pw* main virulence factors are plant cell wall degrading enzymes, which include pectinases, polygalacturonases, proteases, and cellulases. In addition to these enzymes, motility also contributes to the virulence. Motility helps the pathogen to quickly spread from the primary infection site to all over the plant. Until so far, it was thought that pathogens use swimming as a way to move around the plant, which is considered to be an individual movement. Now, however, it is known that plant pathogens use collective movement, swarming, similarly to human and animal pathogens, and that swarming of *Pw* is affected by plant signals.

The aim of this study is to determine how swarming of *Pw* is regulated by signals induced by phenolic compounds of potato. In order to find out, I extracted phenolic compounds from potato tubers (methanol extract) and constructed *fliC::gusA* transcription construct. Methanol extract induced *Pw SCC3193 wt* and *SCC3193 rsmC* swarming on a solid agar. Next I analyzed the effect of methanol extract on transcription constructs of flagellar genes *fliC::gusA* and *flhDC::gusA*. Aquired results showed, that methanol extract induces expression of both of these genes. After that I analyzed the effect of two most common phenolic acids found in potato (salicylic and chlorogen acid) on transcription of given gusA constructs. Effect of salicylic and chlorogenic acid was antagonistic – chlorogenic acid inhibited and salicylic acid induced transcription of flagellar genes.

Despite swarming is one of virulence factors of *Pw*, it differs from other virulence factors such as PCWDE, because swarming is not induced by PGA. My results show that swarming is rather induced by phenolic acids found in plants (potato tubers), which promote expression of flagellar genes and flagella synthesis.

Given results are basis for further studies to have a better understanding of swarming-inducing mechanisms and effects of other phenolic compounds found in potato on swarming.
KASUTATUD KIRJANDUS

LIHTLITSENTS

Mina, Linda-Marie Kimmel (18.01.1992)

1. annan Tartu Ülikoolile tasuta loa (lihtlitsentsi) enda loodud teose

Fenoolsed ühendid kui fütopatogeni Pectobacterium wasabiae voogamist kontrollivad signaalmolekulid,

mille juhendajad on Andres Mäe ja Tiina Alamäe,

1.1 reprodutseerimiseks säilitamise ja üldsusele kättesaadavaks tegemise eesmärgil, sealhulgas digitaalarhiivi DSpace-is lisamise eesmärgil kuni autoriõiguse kehtivuse tähtaja lõppemiseni;

1.2 üldsusele kättesaadavaks tegemiseks Tartu Ülikooli veebikeskkonna kaudu, sealhulgas digitaalarhiivi DSpace’i kaudu kuni autoriõiguse kehtivuse tähtaja lõppemiseni.

2. olen teadlik, et punktis 1 nimetatud õigused jäävad alles ka autorile.

3. kinnitan, et lihtlitsentsi andmisega ei rikuta teiste isikute intellektuaalomandi ega isikuandmete kaitse seadusest tulenevaid õigusi.

Tartus, 23.05.2016